SuperClaus® Process for enhanced sulfur recovery

PEP Review 2019-09
December 2019
Abstract

The modern modified Claus process can remove up to 98% sulfur from Sulfur Recovery Unit (SRU) inlet streams. For greater Sulfur Recovery Efficiency (SRE) that is required by current regulations, a variety of add-on processes for further sulfur removal from the Claus tail gas have been developed.

This review addresses the technology and economics of one such process—the SuperClaus® process, licensed by Jacobs Comprimo® Sulfur Solutions.

This review presents a technical and economic evaluation of the SuperClaus® process, based on a typical refinery, which has processing capacity of 300,000 Barrels per day (b/d) of high sulfur 2 wt% crude. The selected SRU configuration has three trains of 300 Short Tons per Day (STPD) sulfur handling capacity.

This review provides insight into SuperClaus® plant process chemistry, technology, and economics. It can be used as a tool for cost estimation for different plant capacities. It will be beneficial for planners, producers, and designers who are looking for independent data for SuperClaus® plants.

It includes the process flow diagram, material balance, major equipment sizes, and specifications. Cost data, including battery limit and offsite costs, variable costs, CAPEX, OPEX, and overall production costs, is provided.

An interactive iPEP Navigator module of the process is included, which provides a snapshot of the process economics and allows the user to select the units and global region of interest.

The technological and economic assessment of the process is PEP’s independent interpretation of a commercial process based on information presented in open literature (such as patents or technical articles) or in-house generated data (e.g. HYSYS simulation, equipment cost estimation). While this assessment may not reflect actual plant data fully, we do believe that it is sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of a chemical process design.
Contents

1 Introduction 6
2 Summary 7
3 Industry status 10
 Trade 10
 Refinery processes/projects for sulfur recovery 12
4 Technology review 15
 SULFUR 15
 Properties 15
 Regulatory requirements 15
 Process Chemistry 18
 Chemistry of the Claus process 18
Thermal section 19
Catalytic section 21
 Chemistry of the SuperClaus® process 23
Claus process configurations 24
 Straight-through configuration 24
 Split-flow configuration 24
 Oxygen enrichment 25
Steam consumption/production 27
Claus/SuperClaus® catalyst 28
Sulfur species in Claus/SuperClaus® process 30
 Sulfur specifications 30
 Sulfur species in solid/liquid/gaseous form 30
 Solubility of H₂S in liquid sulfur 32
 Effect of dissolved H₂S on viscosity of liquid sulfur 34
Process control points (H₂S/SO₂ ratio, H₂S at the outlet of the third Claus reactor) 35
Temperature profile in the SuperClaus® process 36
 Furnace and Waste Heat Boiler 36
 Condensers 37
 Catalytic reactors 37
Pressure profile in the SuperClaus® process 38
Liquid sulfur degassing, storage, and handling 39
 Chemistry of sulfur degassing using air sparging 39
 Catalyst promoted degassing 40
 Some configurations commercially available 40
5 Process review: Sulfur recovery from typical acid gas stream from refinery by SuperClaus® process 43
 Basis of design 43
 Discussion and explanation of the basis of design 43
 Process Description 45
 Section 100 - Claus Section 45
 Section 200 - SuperClaus® Section 47
Tables

Table 2.1 Recoveries of Clause type processes
Table 2.2 Sulfur recovery reported in various formats for the process analyzed in this review
Table 2.3 process summary
Table 3.1 World production of sulfur
Table 3.2 World imports of sulfur
Table 3.3 World exports of sulfur
Table 3.4: Sulfur recovery projects 2019
Table 3.5 Sulfur recovery projects 2019 by licensor
Table 4.1 Onshore Natural Gas SRU’s percent sulfur recovery requirements\[^{[6]}\]
Table 4.2 Emission levels for petroleum refining facilities per World Bank\[^{[5]}\]
Table 4.3 Sulfur recovery distribution
Table 4.4 Steam producers and consumers in a Claus plant
Table 4.5 Steam production
Table 4.6 Typical specifications of sulfur from SRU\[^{[16]}\]
Table 4.7 Deterioration of performance with incorrect air ratio
Table 4.8 Comparison of the performance of the first Claus reactor(with Titania catalyst)
Table 4.9 Comparison of the performance of the first Claus reactor (with Alumina catalyst)
Table 4.10 Typical pressure profile in SuperClaus® SRU
Table 5.1 Design Basis and assumptions – Recovery of elemental sulfur from refinery acid gas via SuperClaus® process
Table 5.2 Sulfur block capacity calculation
Table 5.3 Input acid gas composition – Recovery of elemental sulfur from refinery acid gas via SuperClaus® process
Table 5.4 Sulfur Recovery Unit (SuperClaus) – Stream flows
Table 5.4 Sulfur Recovery Unit (SuperClaus) – Stream flows continued
Table 5.4 Sulfur Recovery Unit (SuperClaus) – Stream flows continued
Table 5.4 Sulfur Recovery Unit (SuperClaus) – Stream flows concluded
Table 5.5 Major equipment
Table 5.6 Utilities summary - Sulfur Recovery Unit (SuperClaus)
Table 5.7 Capital Cost SRU (Superclaus)
Table 5.8 Capital Cost by Section – SRU (Superclaus)
Table 5.9 Production Costs SRU (Superclaus)
Table 5.9 Production Costs SRU (Superclaus concluded)
Table 5.10 Carbon and water footprint
Appendix B.1 Cited references
Appendix B.2 List of equations

Figures

Figure 2.1 Sulfur price compared with SRU operating cost
Figure 4.1 Original Claus Process – configuration
Figure 4.2 Modified Claus Process – configuration
Figure 4.3: Claus Process – Temperature vs. % equilibrium conversion
Figure 4.4 Modified Claus Process – Split flow configuration
Figure 4.5 Split flow reaction furnace
Figure 4.6 SRU capacity increase with oxygen enrichment
Figure 4.7 COS conversion vs. temperature for Alumina and Titania catalysts
Figure 4.8 COS/CS2 hydrolysis vs. temperature for Alumina and Titania catalysts
Figure 4.9 Viscosity vs. temperature for sulfur liquid
Figure 4.10 sulfur vapor species vs. temperature
Figure 4.11 H2S solubility in liquid sulfur vs. temperature
Figure 4.12 Effect of dissolved H2S on viscosity of molten sulfur
Figure 4.13 Change in conversion of H2S to S as a function of departure of air flow to furnace from ideal
Figure 4.14 Typical configuration of a waste heat boiler
Figure 4.15 Sulfur Degassing Process by BP AMOCO
Figure 4.16 Shell Sulfur Degassing Process
Figure 4.17 Sulfur Degassing Process by Black & Veatch Pritchard
Figure 4.18 Amine-catalyzed HYSPEC™ Sulfur Degassing Process by ENERSUL
Figure 5.1 Density and sulfur content of selected crude oils
Appendix C.1 Process flow diagram – SuperClaus sulfur recovery
Appendix C.1 Process flow diagram – Steam balance