

Pushing FCC for Maximum Chemicals Production

PEP Report 195C December 2020

Mike Kelly Director – Strategic Analytics & Process Technology

Rajeev Singh Principal Research Analyst

Process Economics Program

Contacts

Mike Kelly

Director—Strategic Analytics & Process Technology mike.b.kelly@ihsmarkit.com

Rajeev Singh

Principal Research Analyst rajeev.singh@ihsmarkt.com

RJ Chang

Vice President, Process Economics Program RJ.Chang@ihsmarkit.com

PEP Report 195C

Pushing FCC for Maximum Chemicals Production

Mike Kelly, Director—Strategic Analytics & Process Technology **Rajeev Singh**, Principal Research Analyst

Abstract

Fluid catalytic cracking (FCC) has been a major refinery conversion process for nearly eight decades. The technology is mature, but it continues to evolve in the areas of mechanical reliability, feedstock and operational flexibility, and regulatory requirements. While FCC units have traditionally been operated to maximize gasoline or distillate production, the interest in maximizing light olefins, particularly propylene, has gained traction in recent years. Slowing demand growth for transportation fuels coupled with an expectation for continued petrochemical demand growth has many refiners looking to move their operations toward an increased conversion of crude oil to petrochemicals. FCC catalyst formulation and process technology improvements now give refiners the flexibility to boost propylene yields from traditional levels of 4–6 wt% to beyond 20 wt%. Slowing propylene supply growth from steam cracking, which is the principal source for propylene production, also opens up potential opportunities for high-olefins FCC to help fill the mounting propylene supply-demand gap.

This report provides an overview of fluid catalytic cracking developments in catalyst, process, and hardware technologies with a focus on high olefins processes. A general review of the technical field and recent process developments is included. Detailed technical and economic evaluations are presented for three high olefins FCC technologies, two of which are commercial and the third is under development. Specific assessments are provided for the following technologies:

- Axens/TechnipFMC HS-FCCTM
- Lummus/IOCL Indmax (I-FCCSM)
- Reliance MCC

The analysis and techno-economic design results for HS-FCC and Indmax are based on a feed rate of 80,000 barrel per day of vacuum gas oil, while the design for MCC is based on sequential cracking of multiple feedstocks. The capital and production cost results herein are presented on a US Gulf Coast basis, but the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows users to view results of other major regions along with conversion between English and Metric units.

Contents

 2 Summary Industry aspects Technical aspects Economic aspects 3 Industry status Refined products Gasoline Gasoli/Diesel Jet/kerosene Naphtha Residual fuel oil Propylene Supply 	11
Industry aspects Technical aspects Economic aspects 3 Industry status Refined products Gasoline Gasoil/Diesel Jet/kerosene Naphtha Residual fuel oil Propylene Supply	12
Technical aspects Economic aspects 3 Industry status Refined products Gasoline Gasoil/Diesel Jet/kerosene Naphtha Residual fuel oil Propylene Supply	12
Supply	13
3 Industry status Refined products Gasoline Gasoil/Diesel Jet/kerosene Naphtha Residual fuel oil Propylene Supply	16
Refined products Gasoline Gasoil/Diesel Jet/kerosene Naphtha Residual fuel oil Propylene Supply	18
Gasoline Gasoil/Diesel Jet/kerosene Naphtha Residual fuel oil Propylene Supply	19
Gasoil/Diesel Jet/kerosene Naphtha Residual fuel oil Propylene Supply	23
Jet/kerosene Naphtha Residual fuel oil Propylene Supply	24
Residual fuel oil Propylene Supply	25
Residual fuel oli Propylene Supply	26
Supply	27
Supply	28
Demond	29
Demand	31
	33
	34
4 rechnology review	30
Preducto	30
	39
L DC	39
LF G Gasolino	40
	40
Heavy cycle oil and slurry oil	40
Chemistry	41
Basic reactions	41
Hydrocarbon cracking (B scission)	42
	42
Hydrogen transfer	43
Coke formation	40
Coke combustion	44
Sulfur compound cracking	45
	46
Thermodynamics of ECC reactions	49
Cracking kinetics	49
Catalysts	52
Zeolite structure	52
Catalyst matrix	53
Key characteristics	54
Manufacturing	54
Additives	55
ZSM-5	55
CO combustion promoter	56
NOx	56
SOx	57
Gasoline sulfur	58
Metal traps	58
Bottoms cracking	FO

Selected commercial offerings	59
	60
FGG gasoline sultur reduction	60
Caseline and point reduction	61
Post-treatment	62
Flue das emissions and control	63
Carbon monoxide (CO)	64
SOx	64
NOx	65
Particulates	68
Hardware and configuration	70
Feed injection	70
Riser	70
Riser termination	71
Catalyst stripping	71
Standpipes	72
Regeneration	73
Catalyst cooler	74
Oxygen enrichment	75
Third stage separator	75
Power and heat recovery	75
Main fractionator	75
Vapor recovery section	77
Maximizing FCC propylene	78
Feed quality	78
Reactor temperature	78
Hydrocarbon partial pressure	78
Hydrogen transfer reactions	79
Catalyst-to-oll ratio	79
ZSIM-5 catalyst additive	79
Other considerations	79
	80
	80
HS-ECC™	80
R2R™	91
R2P™	96
HP-FCC	97
TechnipFMC PropyleneMax™ Catalytic Cracking (PMcc™)	97
Lummus/IOCL	99
Indmax FCC (I-FCC SM) process	100
SCC process	107
Reliance	108
MCC SM process	108
KBR	116
MAXOFIN™	116
Superflex™	119
K-COT™	120
K-PRO™	121
UOP	121
PetroFCC™	122
RxPro [™]	124
MSCC	125

	RFCC	126
	Shell	126
	FCC	127
	MILOS	127
	Sinopec	128
	Catalytic pyrolysis process (CPP)	128
	Flexible dual-riser FCC process (FDFCC-III)	129
5	Process economics—HS-FCC™	130
	Process description	130
	Section 100—Cracking and fractionation	130
	Section 200—Vapor recovery	132
	Section 300—Propylene recovery	133
	Process discussion	141
	Feedstock	141
	Cracking section	141
	Vapor recovery section	142
	Propylene recovery section	142
	Environment	143
	Optimization	144
	Cost estimates	144
	Capital costs	144
	Production costs	147
6	Process economics—Indmax (I-FCC℠)	151
	Process description	151
	Section 100—Cracking and fractionation	151
	Section 200—Vapor recovery	153
	Section 300—Propylene recovery	154
	Process discussion	163
	Feedstock	163
	Catalyst	163
	Cracking section	164
	Vapor recovery section	164
	Propylene recovery section	165
	Environment	165
	Optimization	166
	Cost estimates	166
	Capital costs	166
-	Production costs	169
1	Process economics—MCC	173
	Process description	173
	Section 100—Cracking and tractionation	173
	Section 200—Vapor recovery	170
		196
	Plant Canadity	100
	Fidili Capacity	100
		100
	Odidiysi Draduat viold	109
	Cracking section	189
	Vapor recovery section	191
	Vapul recovery section	191
	Frupylene recovery section	191
		192
	Optimization	193
		193

Capital costs	193
Production costs	196
Appendix A–Patent summaries	201
Appendix B–Design and cost basis	218
Appendix C-Cited references	223
Appendix D–Patents by company	232
Appendix E–Process flow diagrams	235

Tables

Table 2.1 Comparison of high olefin FCC process conditions and features	15
Table 2.2 Comparison of high olefin FCC investment and production costs	17
Table 3.1 Current refinery capacity by region	35
Table 4.1 Mass-spec analysis of FCC feedstock (wt%)	36
Table 4.2 Feedstock guidelines for residual FCC	37
Table 4.3 Distribution of sulfur compounds in FCC feedstocks	39
Table 4.4 Typical propylene quality specifications	40
Table 4.5 Aspen HYSYS 21-lump kinetic model	52
Table 4.6 Selected commercial FCC catalysts	59
Table 4.7 Selected commercial FCC additives	60
Table 4.8 Post regenerator NOx control technology comparison	66
Table 4.9 Selective catalytic reduction process conditions	67
Table 4.10 Riser termination considerations	71
Table 4.11 Regenerator oxygen enrichment impact	75
Table 4.12 Typical operating conditions for FCC and HS-FCC	81
Table 4.13 HS-FCC yield comparison—pilot plant testing	86
Table 4.14 Catalyst composition for HS-FCC catalyst used in MAT testing	86
Table 4.15 Properties of feed oils	88
Table 4.16 HS-FCC pilot plant product yields for various feeds	89
Table 4.17 Effect of ZSM-5 addition on HS-FCC product yields at 600°C using VGO	90
Table 4.18 Semicommericial unit performance	90
Table 4.19 Axens/TechnipFMC R2P™ yield comparison	97
Table 4.20 PMcc typical product yields	99
Table 4.21 CB&I/Lummus Indmax sm typical operating conditions	100
Table 4.22 CB&I/Lummus Indmax sM typical catalyst composition	101
Table 4.23 Propylene mode operation of Indmax unit at Guwahati refinery with residue feed	102
Table 4.24 Indmax sm commercial experience	103
Table 4.25 CB&I/Lummus Selected Component Cracking product yields	107
Table 4.26 Effect of ZSM-5 zeolite stabilization process	109
Table 4.27 Typical operating conditions of different riser zones	110
Table 4.28 Pilot plant data vs plant data for two feed co-cracking of LCN and VGO	113
Table 4.29 KBR MAXOFIN™ operating mode comparison	118
Table 4.30 KBR catalytic cracking olefin processes	119
Table 4.31 CPP operating parameter summary	129
Table 5.1 Propylene via HS-FCC process—Design bases and assumptions	134
Table 5.2 Propylene via HS-FCC process—Stream flows	135
Table 5.3 Propylene via HS-FCC process—Major equipment	137
Table 5.4 Propylene via HS-FCC process—Utility summary	140
Table 5.5 Propylene via HS-FCC process—VGO properties	141
Table 5.6 Propylene via HS-FCC process—Carbon emissions and water usage	144
Table 5.7 Propylene via HS-FCC process—Total capital investment	146
Table 5.8 Propylene via HS-FCC process—Total capital investment by section	147
Table 5.9 Propylene via HS-FCC process—Variable costs	149

Table 5.10 Propylene via HS-FCC process—Production costs	150
Table 6.1 Propylene via Indmax process—Design bases and assumptions	155
Table 6.2 Propylene via Indmax process—Product yields	156
Table 6.3 Propylene via Indmax process—Stream flows	156
Table 6.4 Propylene via Indmax process—Major equipment	159
Table 6.5 Propylene via Indmax process—Utilities summary	162
Table 6.6 Propylene via Indmax process—VGO properties	163
Table 6.7 Propylene via Indmax process—Catalyst composition	164
Table 6.8 Propylene via Indmax process—Carbon emissions and water usage	166
Table 6.9 Propylene via Indmax process—Total capital investment	168
Table 6.10 Propylene via Indmax process—Total capital investment by section	169
Table 6.11 Propylene via Indmax process—Variable costs	171
Table 6.12 Propylene via Indmax process—Production costs	172
Table 7.1 Propylene via MCC process—Design bases and assumptions	178
Table 7.2 Propylene via MCC process—Product yields	179
Table 7.3 Propylene via MCC process—Stream flows	179
Table 7.4 Propylene via MCC process—Major equipment	182
Table 7.5 Propylene via MCC process—Utility summary	186
Table 7.6 Propylene via MCC process—Light cracked naphtha feed properties	187
Table 7.7 Propylene via MCC process— Clarified slurry oil feed properties	187
Table 7.8 Propylene via MCC process—Light cracked naphtha feed properties	188
Table 7.9 Propylene via MCC process—Riser heat balance for multi-feed sequential cracking	189
Table 7.10 Propylene via MCC process—Ultimate yield of LCN and crude using MCC technology	190
Table 7.11 Propylene via MCC process—Single Pass Yield for MCC technology	190
Table 7.12 Propylene via MCC process—Calculated and published ultimate yield of LCN cracking	190
Table 7.13 Propylene via MCC process—Carbon emissions and water usage	192
Table 7.14 Propylene via MCC process—Total capital investment	195
Table 7.15 Propylene via MCC process—Total capital investment by section	196
Table 7.16 Propylene via MCC process—Variable costs	199
Table 7.17 Propylene via MCC process—Production costs	200

Figures

Figure 2.1 Typical high olefins FCC block flow diagram	14
Figure 3.1 FCC in the fuel refinery—Block flow diagram	19
Figure 3.2 GDP growth versus product demand growth	20
Figure 3.3 World refined product demand	21
Figure 3.4 World refined product demand growth by region	22
Figure 3.5 World refined product demand by region	23
Figure 3.6 World gasoline demand	24
Figure 3.7 World gasoil/diesel demand	25
Figure 3.8 World jet/kerosene demand	26
Figure 3.9 World naphtha demand	27
Figure 3.10 World residual fuel oil demand	28
Figure 3.11 World PG/CG propylene supply and demand	29
Figure 3.12 World PG/CG propylene production by technology	30
Figure 3.13 World PG/CG propylene producers by shareholder (2020)	31
Figure 3.14 World PG/CG propylene demand by end use	32
Figure 3.15 Regional PG/CG propylene net trade	33
Figure 3.16 World propylene net equivalent trade	34
Figure 3.17 Regional catalytic cracking capacity	35
Figure 4.1 Main reactions in FCC	41
Figure 4.2 Reaction scheme for cracking sulfur compounds	46
Figure 4.3 Structure of faujasite Y-type zeolite	53

Figure 4.4 Common FCC catalyst stripping designs	72
Figure 4.5 Downflow reactor catalyst flow regulator	82
Figure 4.6 Tempest separation system	83
Figure 4.7 HS-FCC downflow reactor	84
Figure 4.8 HS-FCC reactor/regenerator commercial configuration	85
Figure 4.9 HS-FCC catalyst concept	86
Figure 4.10 Family of high-propylene catalytic cracking processes	87
Figure 4.11 Axens/TechnipFMC stripper packing	88
Figure 4.12 Axens/TechnipFMC R2R [™] reactor and regenerator configuration	92
Figure 4.13 Axens/TechnipFMC riser separation system	94
Figure 4.14 Axens/TechnipFMC catalyst cooler	96
Figure 4.15 PMcc configuration with two-stage regeneration for heavier resid feedstocks	98
Figure 4.16 CB&I/Lummus Micro-Jet™ feed injector	104
Figure 4.17 CB&I/Lummus ModGrid™ stripper baffle	105
Figure 4.18 CB&I/Lummus direct coupled cvclones	106
Figure 4.19 CB&I/Lummus multistage orifice air distributor	107
Figure 4.20 Third stage gas-solid separator and axial swirl cone cyclone	112
Figure 4.21 Cracking of LCN and n-Hexane at different temperatures	113
Figure 4.22 Configuration 1: Unstabilized naphtha as absorber media	114
Figure 4.23 Configuration 2: Stripped naphtha as absorber media	115
Figure 4.24 Configuration 3: Stabilized naphtha as absorber media	115
Figure 4.25 KBR Orthoflow converter	117
Figure 4.26 KBR Superflex™ process reaction section	120
Figure 4.27 UOP PetroFCC™ process	122
Figure 4.28 UOP RxPro™ process	125
Figure 4.29 UOP RECC process	126
Figure 4.30 Shell typical ECC configuration	127
Figure 5.1 Propylene via HS-FCC process—Effect of plant capacity on investment costs	145
Figure 5.2 Propylene via HS-FCC process—Net production cost as a function of operating level	148
Figure 5.3 Propylene via HS-FCC process—Product value as a function of operating level	149
Figure 6.1 Propylene via Indmax process—Effect of plant capacity on investment costs	167
Figure 6.2 Propylene via Indmax process—Net production cost as a function of operating level	170
Figure 6.3 Propylene via Indmax process—Product value as a function of operating level	171
Figure 7.1 Propylene via MCC process—Effect of plant capacity on investment costs	194
Figure 7.2 Propylene via MCC process—Net production cost as a function of operating level	197
Figure 7.3 Propylene via MCC process—Product value as a function of operating level	198
. gale i le i leppielle i la mee procede i i reader raide de a raiteren er operating lever	.00

Appendix E Figures

Figure 5.4 Propylene via HS-FCC process—Process flow diagram	236
Figure 6.4 Propylene via Indmax process—Process flow diagram	239
Figure 7.4 Propylene via MCC process—Process flow diagram	242

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ld. or any of its affiliates ('IHS Markit') is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, and projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit no responsible for either the content or output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

