Reduced Carbon Intensity Ethylene Production

PEP Report 29M
December 2021
Contacts

Subodh Sarin
Director
subodh.sarin@ihsmarkit.com

Rajesh Verma
Director
rajesh.verma@ihsmarkit.com

Rajeev Singh
Principal Research Analyst
rajeev.singh@ihsmarkit.com

Michael Arné
Director, Process Economics Program
michael.arne@ihsmarkit.com
PEP Report 29M

Reduced Carbon Intensity Ethylene Production

Subodh Sarin, Director
Rajesh Verma, Director
Rajeev Singh, Principal Research Analyst

Abstract

Ethylene is the largest-volume basic petrochemical, produced primarily by steam cracking of hydrocarbons (naphtha, gas oil, ethane, and LPG) and is utilized to produce a spectrum of chemical intermediates. Ethylene consumption has been increasingly driven by its demand in emerging countries and the consumption has increased at an average rate of ~4% per year over the past decade.

Ethylene production is one of the three largest CO₂ emitters in the chemical industry; the other two are that of propylene and ammonia. Conventional cracking generates roughly 1–1.8 metric tons (Mt) of CO₂ for every metric ton of ethylene produced. Globally, that amounts to more than 260 million tons of CO₂ emissions per year.

This report provides an overview of the developments in ethylene production technology with a focus on reduced carbon intensity. Numerous technological advancements have been presented which significantly reduce CO₂ emission from ethylene plants. Detailed technical and economic evaluations are presented for the following three technologies with reduced carbon intensity for ethylene production:

• EcoCatalytic chemical looping technology
• Coolbrook’s roto dynamic reactor (RDR) technology
• Electric furnace technology

The analysis and techno-economic design results for the above three technologies are based on the production of 1 MMtpa polymer-grade ethylene. Electric furnace and Coolbrook’s roto dynamic reactor have been evaluated with wide range naphtha (WRN) as feed while the design of the EcoCatalytic technology will be based on ethane feed. The capital and production cost results herein are presented for the fourth quarter of 2020 on a US Gulf Coast basis.

The analysis is based on information by the technology provider presented in the open literature (such as patents or technical articles) or in-house generated data (e.g., HYSYS simulation, equipment cost estimation). While this assessment may not reflect the actual plant data fully, we do believe that it is sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of a process design.
Contents

1 Introduction 10
2 Summary 11
 Process economics 12
 Energy and carbon intensity 12
 Impact of cost of electricity on the process economics 13
3 Industry status 16
 Characteristics of the market 17
4 Technology review 20
 Decarbonization measure in a steam cracker 20
 Coke inhibition technology 21
 Mechanical device for enhanced heat transfer 21
 Mechanical device for increased surface area 21
 Mechanical device for increased heat transfer coefficient 21
 Surface technologies 22
 Aluminum-based alloy 23
 Ceramic material 23
 Permanent surface coatings 24
 Feed additives 24
 Method to improve furnace thermal efficiency 25
 Combustion air preheat 25
 Gas turbine integration 25
 High-emissive refractory coating 25
 Heat recovery scheme 26
 Alternate feedstock and fuel for olefins production 27
 Bio-naphtha 27
 Bio-ethanol 28
 Bio-methanol 28
 Pyrolysis oil 28
 Biogas as fuel 28
 Hydrogen as fuel 28
 Oxy-fuel combustion 29
 Carbon capture in an ethylene plant 29
 Carbon capture and utilization 29
 Technology readiness level 30
 Oxidative dehydrogenation of ethane (ODHE) 30
 Chemical looping 32
 Catalysts 34
 EcoCatalytic chemical looping process for ethylene production 35
 Acetylene hydrogenation 44
 Ethylene and propylene recovery system 45
 Coolbrook RDR reactor [US 20210171836A1, 202129112] 46
 Background 46
 Current status 49
 Electric furnace for steam cracking 49
 Ohmic or joule heating 50
 Induction-heated reactor 51
 Microwave/radio frequency (RF) heating 52
 Latest development by petrochemical players 53
 BASF electric furnace technology 54
5 Ethane oxidative dehydrogenation of ethylene production using EcoCatalytic chemical looping technology

- Basis of design
- Material of construction
- Storage tanks

Process description
- Ethane ODH reaction and catalyst regenerator (Section 100)
- ODH reaction effluent compression and de-methanizer (Section 200)
- Ethylene recovery section (Section 300)
- Propylene recovery section (Section 400)
- Ethylene and propylene refrigeration system
- Hydrogen purification (PSA) system
- CO, CO\textsubscript{2} gases removal system

Process discussion
- Reactor/regenerator system
- CO\textsubscript{2} recovery option
- Front-end DeC1 vs front-end DeC2
- Propylene recovery option

Emission and wastes

Cost estimates
- Fixed capital costs
- Production costs

6 Naphtha cracking for ethylene production using Coolbrook RDR technology

- Basis of design
- Storage tanks

Process description
- Section 100—Pyrolysis and quench
- Cold section
- Section 200—Compression, drying, and de-propanizer
- Section 300—Subcooling and separations
- Section 400—Product separation
- Section 500—Refrigeration
- Section 600—Steam distribution

Process discussion
- Impact of renewable electricity on process economics
- Potential to use renewable electricity
- Specific energy calculation
- Steam system design
- Stage of development of technology
- Product slate
- Ethylene cracker with RDR—configuration options
- Number of furnaces
- Cold section design
- Environment
- Material of construction (MOC)

Carbon and water footprint

Cost estimate
- Fixed capital costs
- Production costs

7 Naphtha cracking for ethylene production using electric furnace technology

- Basis of design

Process description
- Section 100—Pyrolysis and quench
- Section 200—Compression, drying, de-propanizer
Section 300—Subcooling and separation 130
Section 400—Product separation 130
Section 500—Refrigeration 131
Section 600—Steam distribution 131

Process discussion 151
Impact of cost of renewable electricity on the process economics 151
Potential to use renewable electricity 151
Specific energy calculation 151
Electric furnace yield 151
Steam system design 152
Number of furnaces 152
Stage of development of technology 152
Ethylene cracker with an electric furnace—configuration options 152
Cold section design 154
Environment 155
Material of construction 155
Carbon and water footprint 155
Cost estimates 155
Fixed capital costs 156
Production costs 157

Appendix A—Design and cost basis 159
Appendix B—Cited references 163
Appendix C—Process flow diagrams 173

Tables

Table 2.1 Overall summary of the ethylene technologies 12
Table 2.2 Specific energy consumption—hydrocarbon cracking process 13
Table 2.3 Carbon footprint based on the use of net-zero-carbon renewable electricity 13
Table 3.1 World capacity/consumption for ethylene (thousands of metric tons) 16
Table 3.2 World consumption of ethylene by end-use 17
Table 3.3 World top producers of ethylene—2020 19
Table 4.1 Mechanical device for enhanced heat transfer coefficient 22
Table 4.2 Composition of Centralloy® HT E by Schmidt and Clemens 23
Table 4.3 Permanent surface coating 24
Table 4.4 EcoCatalytic CL-ODH process—operating conditions [US 20200062677, WO 2016049144, WO 2018005456] 38
Table 5.1 EcoCatalytic CL-ODHE process—Design basis and assumption 59
Table 5.2 EcoCatalytic CL-ODHE process—Material balance and key performance parameters 68
Table 5.3 EcoCatalytic CL-ODHE process—Major stream flows 69
Table 5.4 EcoCatalytic CL-ODHE process—Major equipment 74
Table 5.5 EcoCatalytic CL-ODHE process—Utility summary 77
Table 5.6 EcoCatalytic CL-ODHE—FE DeC1 vs FE DeC2 option economic comparison 79
Table 5.7 EcoCatalytic CL-ODH process—with and without the propylene recovery option economic comparison 80
Table 5.8 EcoCatalytic CL-ODHE process—Environmental footprint 80
Table 5.9 EcoCatalytic CL-ODHE process—Total capital investment 82
Table 5.10 EcoCatalytic CL-ODHE process—Total capital investment by section 83
Table 5.11 EcoCatalytic CL-ODHE process—Variable costs 84
Table 5.12 EcoCatalytic CL-ODHE process—Production cost 85
Table 6.1 Coolbrook RDR process—Design bases and assumptions 89
Table 6.1a Coolbrook RDR process—cracking yield (wt%) [US 20210171836A1, 202129113] 90
Table 6.2 Coolbrook’s RDR process—Major stream flows
Table 6.3 Coolbrook’s RDR process—Major equipment
Table 6.4 Coolbrook RDR process—product slate (conventional vs RDR)
Table 6.5 Total energy requirement (1 MMtpa ethylene, wide range naphtha)
Table 6.6 RDR process—Carbon emissions and water usage
Table 6.7 Coolbrook RDR process—Total capital investment
Table 6.8 Coolbrook RDR process—Variable costs
Table 6.9 Coolbrook RDR process—Production costs
Table 7.1 Electric furnace process—Design bases and assumptions
Table 7.2 Electric furnace process—Cracking yields (wt%)
Table 7.3 Electric furnace process—Major stream flows
Table 7.4 Total energy requirement (1 MMtpa ethylene, wide range naphtha feed)
Table 7.5 Electric furnace process—Carbon emissions and water usage
Table 7.6 Electric furnace process—Total capital investment
Table 7.7 Electric furnace process—Variable costs
Table 7.8 Electric furnace process—Production costs

Figures

Figure 2.1 Net production cost vs electricity price (RDR process)
Figure 2.2 Net production cost vs electricity price (EF process)
Figure 4.1 Low-Emission cracking furnace [US 20200172814]
Figure 4.2 Circulating fluidized bed Chemical looping reactor
Figure 4.3 Effect of CaSO_4 promoter on ethylene selectivity [US 2020062677]
Figure 4.4 Effect of ethane conversion on ethylene selectivity [US 10919027]
Figure 4.5 Effect of ethane conversion on H_2 conversion and water formation [US 10919027]
Figure 4.6 Effect of steam addition on olefin selectivity in the ODH process [US 20200123084]
Figure 4.7 Effect of operating pressure on ethylene yield [US 20200123084]
Figure 4.8 Effect of system pressure on net energy requirement [US 20200123084]
Figure 4.9 Effect of ethane conversion on ethylene yield and selectivity [US 20200123084]
Figure 4.10 Naphtha pyrolysis—influence of temperature and residence time
Figure 4.11 Relative size of a conventional gas furnace and RDR facility
Figure 4.12 Representation of an RDR machine
Figure 4.13 Electric resistance-heated methane steam reformer
Figure 4.14 Electric induction-heated methane steam reformer
Figure 4.15 Conventional furnace with heat and material balance across plant [EP 3725865]
Figure 4.16 Electric furnace with heat and material balance across plant [EP 3725865]
Figure 4.17 Electric furnace with feed/effluent exchanger [EP 3725865]
Figure 5.1 Process schematic of an ethylene and propylene refrigeration system
Figure 5.2 Process schematic for an H_2 PSA system
Figure 5.3 Process schematic for a CO, CO_2 removal system
Figure 5.4 Effect of plant capacity on investment costs
Figure 5.5 Effect of waste plastic feed on net production cost and product value
Figure 5.6 Effect of light oil by-product on net production cost and product value
Figure 5.7 Effect of plant operating level on net production cost
Figure 6.1 BFD of a naphtha cracker using RDR
Figure 6.2 Heat balance across a conventional gas furnace for wide range naphtha
Figure 6.3 RDR options—comparison with a conventional gas furnace design
Figure 7.1 Heat balance across the electric furnace for wide range naphtha
Figure 7.2 BFD of a naphtha cracker using an electric furnace
Figure 7.3 Electric furnace options—comparison with a conventional gas furnace design
Appendix C Figures

Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using chemical looping
174
Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using chemical looping
175
Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using chemical looping
176
Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using chemical looping
177
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 1 of 6)
178
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 2 of 6)
179
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 3 of 6)
180
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 4 of 6)
181
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 5 of 6)
182
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 6 of 6)
183
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 1 of 6)
184
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 2 of 6)
185
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 3 of 6)
186
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 4 of 6)
187
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 5 of 6)
188
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 6 of 6)
189