

Reduced Carbon Intensity Ethylene Production

PEP Report 29M December 2021

Subodh Sarin Director

Rajesh Verma Director

Rajeev Singh Principal Research Analyst

Process Economics Program

Contacts

Subodh Sarin

Director subodh.sarin@ihsmarkt.com

Rajesh Verma

Director rajesh.verma@ihsmarkt.com

Rajeev Singh

Principal Research Analyst rajeev.singh@ihsmarkit.com

Michael Arné

Director, Process Economics Program michael.arne@ihsmarkt.com

PEP Report 29M

Reduced Carbon Intensity Ethylene Production

Subodh Sarin, Director Rajesh Verma, Director Rajeev Singh, Principal Research Analyst

Abstract

Ethylene is the largest-volume basic petrochemical, produced primarily by steam cracking of hydrocarbons (naphtha, gas oil, ethane, and LPG) and is utilized to produce a spectrum of chemical intermediates. Ethylene consumption has been increasingly driven by its demand in emerging countries and the consumption has increased at an average rate of \sim 4% per year over the past decade.

Ethylene production is one of the three largest CO_2 emitters in the chemical industry; the other two are that of propylene and ammonia. Conventional cracking generates roughly 1–1.8 metric tons (Mt) of CO_2 for every metric ton of ethylene produced. Globally, that amounts to more than 260 million tons of CO_2 emissions per year.

This report provides an overview of the developments in ethylene production technology with a focus on reduced carbon intensity. Numerous technological advancements have been presented which significantly reduce CO_2 emission from ethylene plants. Detailed technical and economic evaluations are presented for the following three technologies with reduced carbon intensity for ethylene production:

- EcoCatalytic chemical looping technology
- Coolbrook's roto dynamic reactor (RDR) technology
- Electric furnace technology

The analysis and techno-economic design results for the above three technologies are based on the production of 1 MMtpa polymer-grade ethylene. Electric furnace and Coolbrook's roto dynamic reactor have been evaluated with wide range naphtha (WRN) as feed while the design of the EcoCatalytic technology will be based on ethane feed. The capital and production cost results herein are presented for the fourth quarter of 2020 on a US Gulf Coast basis.

The analysis is based on information by the technology provider presented in the open literature (such as patents or technical articles) or in-house generated data (e.g., HYSYS simulation, equipment cost estimation). While this assessment may not reflect the actual plant data fully, we do believe that it is sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of a process design.

Contents

1	Introduction	10
2	Summary	11
	Process economics	12
	Energy and carbon intensity	12
	Impact of cost of electricity on the process economics	13
3	Industry status	16
	Characteristics of the market	17
4	Technology review	20
	Decarbonization measure in a steam cracker	20
	Coke inhibition technology	21
	Mechanical device for enhanced heat transfer	21
	Mechanical device for increased surface area	21
	Mechanical device for increased heat transfer coefficient	21
	Surface technologies	22
	Aluminum-based alloy	23
	Ceramic material	23
	Permanent surface coatings	24
	Feed additives	24
	Method to improve furnace thermal efficiency	25
	Combustion air preheat	25
	Gas turbine integration	25
	High-emissive refractory coating	25
	Heat recovery scheme	26
	Alternate feedstock and fuel for olefins production	27
	Bio-naphtha	27
	Bio-ethanol	28
	Bio-methanol	28
	Pyrolysis oil	28
	Biogas as fuel	28
	Hydrogen as fuel	28
	Oxy-fuel compustion	29
	Carbon capture in an etnylene plant	29
		29
	Ovidative debudragenetics of others (ODUE)	30
		30
	Catalvata	32
	Calalysis	34
		55
	Ethylene and propylene recovery system	44
	Coolbrook DDP reactor [US 20210171836A1_202120112]	40
	Background	40
	Current status	40
	Electric furnace for steam cracking	40
	Obmic or joule beating	4 3 50
	Induction-heated reactor	50
	Microwaye/radio frequency (RF) heating	52
	Latest development by petrochemical players	52
	BASE electric furnace technology	53 54
		0-1

chemical looping technology Basis of design	58 58 60
Basis of design	58 60
Material of construction	60
	00
Storage tanks	61
Process description	61
Ethane ODH reaction and catalyst regenerator (Section 100)	61
ODH reaction effluent compression and de-methanizer (Section 200)	62
Ethylene recovery section (Section 300)	63
Propylene recovery section (Section 400)	63
Ethylene and propylene refrigeration system	64
Hydrogen purification (PSA) system	65
CO, CO ₂ gases removal system	66
Process discussion	78
Reactor/regenerator system	78
CO ₂ recovery option	79
Front-end DeC1 vs front-end DeC2	79
Propylene recovery option	79
	00
Fixed capital costs	01
Production costs	81
6 Naphtha cracking for ethylene production using Coolbrook RDR technology	88
Basis of design	88
Storage tanks	90
Process description	90
Section 100—Pyrolysis and quench	92
Cold section	93
Section 200—Compression, drying, and de-propanizer	93
Section 300—Subcooling and separations	94
Section 400—Product separation	94
Section 500—Refrigeration	95
Section 600—Steam distribution	95
Process discussion	115
Impact of renewable electricity on process economics	115
Potential to use renewable electricity	115
Specific energy calculation	116
Steam system design	116
Stage of development of technology	116
Product slate	116
Ethylene cracker with RDR—configuration options	117
Number of furnaces	119
Cold section design	120
Environment Material of construction (MOC)	120
Carbon and water feetprint	121
	121
Fixed capital costs	121
Production costs	122
7 Naphtha cracking for ethylene production using electric furnace technology	125
Basis of design	125
Process description	127
Section 100—Pyrolysis and quench	128
Section 200—Compression, drying, de-propanizer	129

Section 300—Subcooling and separation	130
Section 400—Product separation	130
Section 500—Refrigeration	131
Section 600—Steam distribution	131
Process discussion	151
Impact of cost of renewable electricity on the process economics	151
Potential to use renewable electricity	151
Specific energy calculation	151
Electric furnace yield	151
Steam system design	152
Number of furnaces	152
Stage of development of technology	152
Ethylene cracker with an electric furnace—configuration options	152
Cold section design	154
Environment	155
Material of construction	155
Carbon and water footprint	155
Cost estimates	155
Fixed capital costs	156
Production costs	157
Appendix A—Design and cost basis	159
Appendix B—Cited references	
Appendix C—Process flow diagrams	173

Tables

Table 2.1 Overall summary of the ethylene technologies	12
Table 2.2 Specific energy consumption—hydrocarbon cracking process	13
Table 2.3 Carbon footprint based on the use of net-zero-carbon renewable electricity	13
Table 3.1 World capacity/consumption for ethylene (thousands of metric tons)	16
Table 3.2 World consumption of ethylene by end-use	17
Table 3.3 World top producers of ethylene—2020	19
Table 4.1 Mechanical device for enhanced heat transfer coefficient	22
Table 4.2 Composition of Centralloy [®] HT E by Schmidt and Clemens	23
Table 4.3 Permanent surface coating	24
Table 4.4 EcoCatalytic CL-ODH process—operating conditions [US 20200062677, WO	
2016049144, WO 2018005456]	38
Table 5.1 EcoCatalytic CL-ODHE process—Design basis and assumption	59
Table 5.2 EcoCatalytic CL-ODHE process—Material balance and key performance parameters	68
Table 5.3 EcoCatalytic CL-ODHE process—Major stream flows	69
Table 5.4 EcoCatalytic CL-ODHE process—Major equipment	74
Table 5.5 EcoCatalytic CL-ODHE process—Utility summary	77
Table 5.6 EcoCatalytic CL-ODHE—FE DeC1 vs FE DeC2 option economic comparison	79
Table 5.7 EcoCatalytic CL-ODHE process—with and without the propylene recovery option	
economic comparison	80
Table 5.8 EcoCatalytic CL-ODHE process—Environmental footprint	80
Table 5.9 EcoCatalytic CL-ODHE process—Total capital investment	82
Table 5.10 EcoCatalytic CL-ODHE process—Total capital investment by section	83
Table 5.11 EcoCatalytic CL-ODHE process—Variable costs	84
Table 5.12 EcoCatalytic CL-ODHE process—Production cost	85
Table 6.1 Coolbrook RDR process—Design bases and assumptions	89
Table 6.1a Coolbrook RDR process—cracking yield (wt%) [US 20210171836A1, 202129113]	90

96
112
117
118
121
122
123
124
125
126
132
148
153
155
156
157
158

Figures

Figure 2.1 Net production cost vs electricity price (RDR process)	14
Figure 2.2 Net production cost vs electricity price (EF process)	15
Figure 4.1 Low-Emission cracking furnace [US 20200172814]	27
Figure 4.2 Circulating fluidized bed Chemical looping reactor	32
Figure 4.3 Effect of CaSO ₄ promoter on ethylene selectivity [US 20200062677]	39
Figure 4.4 Effect of ethane conversion on ethylene selectivity [US 10919027]	40
Figure 4.5 Effect of ethane conversion on H ₂ conversion and water formation [US 10919027]	40
Figure 4.6 Effect of steam addition on olefin selectivity in the ODH process [US 20200123084]	41
Figure 4.7 Effect of operating pressure on ethylene yield [US 20200123084]	42
Figure 4.8 Effect of system pressure on net energy requirement [US 20200123084]	43
Figure 4.9 Effect of ethane conversion on ethylene yield and selectivity [US 20200123084]	44
Figure 4.10 Naphtha pyrolysis—influence of temperature and residence time	47
Figure 4.11 Relative size of a conventional gas furnace and RDR facility	48
Figure 4.12 Representation of an RDR machine	48
Figure 4.13 Electric resistance-heated methane steam reformer	51
Figure 4.14 Electric induction-heated methane steam reformer	52
Figure 4.15 Conventional furnace with heat and material balance across plant [EP 3725865]	56
Figure 4.16 Electric furnace with heat and material balance across plant [EP 3725865]	56
Figure 4.17 Electric furnace with feed/effluent exchanger [EP 3725865]	57
Figure 5.1 Process schematic of an ethylene and propylene refrigeration system	65
Figure 5.2 Process schematic for an H ₂ PSA system	66
Figure 5.3 Process schematic for a CO, CO2 removal system	67
Figure 5.4 Effect of plant capacity on investment costs	85
Figure 5.5 Effect of waste plastic feed on net production cost and product value	86
Figure 5.6 Effect of light oil by-product on net production cost and product value	86
Figure 5.7 Effect of plant operating level on net production cost	87
Figure 6.1 BFD of a naphtha cracker using RDR	92
Figure 6.2 Heat balance across a conventional gas furnace for wide range naphtha	117
Figure 6.3 RDR options—comparison with a conventional gas furnace design	119
Figure 7.1 Heat balance across the electric furnace for wide range naphtha	126
Figure 7.2 BFD of a naphtha cracker using an electric furnace	127
Figure 7.3 Electric furnace options—comparison with a conventional gas furnace design	154

Appendix C Figures

Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using	
chemical looping	174
Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using	
chemical looping	175
Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using	
chemical looping	176
Figure C.1 EcoCatalytic oxidative dehydrogenation of ethane for ethylene production using	
chemical looping	177
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 1 of 6)	178
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 2 of 6)	179
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 3 of 6)	180
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 4 of 6)	181
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 5 of 6)	182
Figure C.2 Ethylene from naphtha using the RDR technology (Sheet 6 of 6)	183
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 1 of 6)	184
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 2 of 6)	185
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 3 of 6)	186
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 4 of 6)	187
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 5 of 6)	188
Figure C.3 Ethylene from naphtha using the electric furnace technology (Sheet 6 of 6)	189

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any
media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS
Markit or the author(s) has any obligation to update this presentation in the event that any content, opinion, statements, estimates, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright© 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

