

Bio-Based Monoethylene Glycol

PEP Report 309 January 2022

Marianna Asaro Executive Director Industry Chemistry and Catalysis

Pete Pavlechko Director Chemicals, Monomers, and Intermediates

Susan Bell Executive Director Polymer Processes

Process Economics Program

Contacts

Marianna Asaro

Executive Director Marianna.Asaro@ihsmarkit.com

Pete Pavlechko

Director, Chemicals, Monomers, and Intermediates Pete.Pavlechko@ihsmarkit.com

Susan Bell

Executive Director Susan.Bell@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program Michael.Arne@ihsmarkit.com

PEP Report 309

Bio-Based Monoethylene Glycol

Marianna Asaro, Executive Director, Industrial Chemistry and Catalysis Pete Pavlechko, Director Susan Bell, Executive Director, Polymer Processes

Abstract

This report presents process designs and economics for production of monoethylene glycol, MEG, from the biomass raw material corn kernels. Recent developments, background technologies, and catalyst synthesis chemistry are discussed in relation to process design.

Fast moving consumer goods companies such as Nestlé, PepsiCo, Unilever, and Coca-Cola have been under intense environmental pressure to address sustainability in their supply chains. The key issue is sustainable packaging. Sustainable feedstocks are created from renewable resources, which reduce both dependency on crude oil and emission of greenhouse gas. For packaging composed of polyethylene terephthalate (PET), made from terephthalic acid and MEG, interest in bio-based production has grown. Coca-Cola introduced PlantBottle[™] packaging, using PET bottles made partially from plants, in 2009. Commercially available bio-based PET is produced from bio-based MEG, replacing 30% of the petroleum feedstock used to produce PET with renewable feedstock.

India Glycols (Uttar Pradesh, India) has operated the world's only commercial scale bio-based MEG plant since 1989. The process involves four chemical steps, and the product is much more expensive than conventionally produced, ethylene-based MEG. Factors most influencing the economics of bio-based MEG include the cost of processing biomass to obtain sugars, the relative prices of renewable feedstocks vs. ethylene, and the scale of production.

Recently, new bio-based MEG processes have been developed and claim lower production costs. The biotechnology company Avantium developed a one-step direct process, called the Avantium RAY TechnologyTM, to produce bio-based MEG by catalytic hydrogenolysis of glucose. Haldor Topsøe developed a two-step process, using their MOSAIKTM platform, to produce MEG by pyrolysis of glucose followed by hydrogenation.

This report reviews the current industrial status and recent technical developments in bio-based technologies to produce MEG. Process economic evaluations of integrated MEG production plant using the current process, MEG production based on public disclosures related to Avantium's RAY technology, and MEG production based on public disclosures related to Haldor Topsøe's MOSAIKTM technology are presented.

The Bio-based MEG interactive iPEP module is included, enabling the user to compare economics for the different processes in multiple geographic regions.

While the processes presented herein represent the IHS Markit Process Economic Program's (PEP's) independent interpretation of the literature, and may not reflect in whole or in part the actual catalyst formulations and plant configurations, PEP believes the conceptual designs are sufficiently representative of materials and plant configurations used to enable Class III economic evaluations.

Contents

1	Introduction	8
2	Summary	10
	Production capacity and process features	11
	Cost estimates	13
	Carbon footprint	16
3	Industry status	18
	Supply and demand	18
	End markets	19
	MEG producers	20
	MEG capacity by process	20
	BIO-DASED MEG STATUS	21
	Avanuum Eni Vereelie	21
	Elli Velsalis Haldar Tansaa	22
		22
	Market prices	22
4	Technology overview	20
	MEG processes	24
	MEG from ethylene	24
	MEG from coal via synthesis gas	24
	MEG from renewable feedstocks—First-generation technology	25
	Ethanol production	25
	Ethylene production	28
	Ethylene oxide and monoethylene glycol production	28
	MEG from renewable feedstocks—Second-generation technology	30
	Second generation feedstocks	30
	Routes to bio-based MEG	32
	Avantium Ray Technology™	35
	Eni Versalis MEG Process	37
	Haldor Topsøe's MOSAIK™ technology	37
_	UPM	39
5	Bio-MEG via the conventional four-step process from corn	43
	Design bases	43
	Process description	44
	Section 100—Com well mining (and sacchamication)	44
	Section 200 Debydration	43
	Section 400—EO/MEG	45
	Process discussion	
	Materials of construction	51
	Process waste effluents	51
	Cost estimates	52
	Fixed capital costs	52
	Production costs	54
6	Production of MEG by the MOSAIK™ process	60
	Design bases	60
	Chemistry of key process steps	61
	Fast pyrolysis of glucose followed by hydrogenation	65
	Process description	68

	Section 100—Corn wet milling and saccharification	68
	Corn steeping	68
	Germ separation	69
	Fiber separation	69
	Starch separation	69
	Starch wash	70
	Starch hydrolysis	70
	Section 200—Glucose syrup purification and concentration	70
	Section 300—Pyrolysis, hydrogenation, and separations (MOSAIK™ technology)	71
	Section 400—GAC regeneration	72
	Process discussion	84
	Raw materials and products	85
	Purification of glucose syrup	85
	Pyrolysis	86
	Hydrogenation	87
	Purification of MEG	89
	Materials of construction	89
	Management of utilities consumptions	90
	Process waste effluents	90
	Cost estimates	92
	Fixed capital costs	93
_	Production costs	94
7	Bio-MEG via corn wet milling and Avantium hydrogenolysis	102
	Design bases	102
	Chemistry and yields	102
	Process description	104
	Section 100—Com wet mining (and sacchanication)	104
	Section 200 – Hydrogenetycic and purification	105
		105
	Process discussion	114
	Raw materials and products	114
	Purification of MEG	115
	Catalyst handling	117
	Materials of construction	118
	Management of utilities consumptions	118
	Process waste effluents	120
	Cost estimates	121
	Fixed capital costs	121
	Production costs	123
Ap	pendix A—Patent summaries by assignee	130
Ap	pendix B—Design and cost basis	138
Ар	pendix C—Cited references	144
Ap	pendix D—Process flow diagrams	149

Tables

Table 2.1 Summary of process technologies for production of bio-based MG	12
Table 2.2 Economic comparison of plant configurations for production of bio-based MEG	13
Table 3.1 2020 Top MEG producers by company	20
Table 3.2 2020 Top MEG producers by shareholder	20

Table 3.3 2020 MEG capacity by process	21
Table 3.4 Bio-based MEG plants	21
Table 3.5 Feedstock, product, and by-product prices on the USGC	23
Table 5.1 Bio-MEG via the conventional four-step process from corn-Design bases and	
assumptions	44
Table 5.2 Bio-MEG via the conventional four-step process from corn—Major stream flows	46
Table 5.3 Bio-MEG via the conventional four-step process from corn—Major equipment	50
Table 5.4 Bio-MEG via the conventional four-step process from corn—Utilities summary	50
Table 5.5 Bio-MEG via the conventional four-step process from corn—Process effluent streams	51
Table 5.6 Bio-MEG via the conventional four-step process from corn—Carbon emissions	52
Table 5.7 Bio-MEG via the conventional four-step process from corn—Total capital investment	54
Table 5.8 Bio-MEG via the conventional four-step process from corn—Total capital investment by	
process section	56
Table 5.9 Bio-MEG via the conventional four-step process from corn—Production costs	57
Table 6.1 MEG from corn by the MOSAIK process—Design bases and assumptions	62
Table 6.2 MEG from corn by the MOSAIK process—Stream flows	73
Table 6.3 MEG from corn by the MOSAIK process—Major equipment	82
Table 6.4 MEG from corn by the MOSAIK process—I Itilities summary	84
Table 6.5 MEG from corn by the MOSAIK process—Process effluent streams	01
Table 6.6 MEG from corn by the MOSAIK process—Carbon emissions	92
Table 6.7 MEG from corn by the MOSAIK process—Total capital investment	97
Table 6.8 MEG from corn by the MOSAIK process—Total capital investment by process section	98
Table 6.9 MEG from corn by the MOSAIK process—Production costs	90
Table 6.9 MEG from corn by the MOSAIK process—Production costs (concluded)	100
Table 7.1 Bio-MEG via the conventional four-step process from corp.—Design bases and	100
assumptions	104
Table 7.2 Bio-MEG via corp wet milling and the Avantium hydrogenolysis process—Major	10-
stream flows	106
Table 7.3 Bio MEC via corp wet milling and the Avantium bydrogenolycis process. Major equipment	112
Table 7.5 Bio-MEG via corn wet milling and the Avantium hydrogenolysis process—Major equipment	11/
Table 7.4 Dio-MEG via comment mining and the Avantium hydrogenorysis process—offittees summary	114
Table 7.6 Bio MEC via corp wet milling and the Avantium hydrogenolysis process. Process	115
offluent streams	110
Table 7.7 Pig MEC via corp wat milling and the Avaptium hydrogenetycic process. Carbon omissions	110
Table 7.9 Rio MEC via corr wet milling and the Avantium bydrogonolysis process—Carbon emissions	5120
capital investment	125
Table 7.0 Big MEC via corp wat milling and the Avantium hydrogenolysis process. Total capital	120
investment by process section	126
Table 7.10 Rio_MEC via corp wat milling and the Aventium hydrogenelysis process. Broduction costs	120
	$ \angle l$

Figures

Figure 1.1 PET production chemistry	8
Figure 1.2 Bio-based MEG production via bio-based ethanol	9
Figure 2.1 Production of bio-based MEG—Factors of production including 15% ROI, USGC	15
Figure 2.2 Spot prices of ethylene and MEG on the US Gulf Coast over time	16
Figure 2.3 Production of bio-based MEG—Carbon footprints	17
Figure 3.1 MEG supply and demand	18
Figure 3.2 2020 MEG supply and demand by region	19
Figure 4.1 MEG production processes	24
Figure 4.2 Bio-based MEG production via bio-based ethanol	25
Figure 4.3 Ethanol production via corn wet milling—Block flow diagram	27
Figure 4.4 Ethanol production via corn dry milling—Block flow diagram	27
Figure 4.5 Ethylene production from ethanol by adiabatic, fixed-bed catalytic dehydration	29

Figure 4.6 Structure of cellulose Figure 4.7 Simplified structure of hemicellulose Figure 4.8 An example of lignin biopolymer	30 31 32
Figure 4.9 Main types of lightin group	33
hydrogenolysis	33
Figure 4.11 Reactions for the conversion of carbohydrate to glycols by retro-Aldol reaction followed	34
Figure 4.12 Continuous process to produce MEG [US 11008269]	37
Figure 4.13 M&G proposed process for MEG production	37
Figure 4.14 Continuous process to produce glycolaldehyde described by Haldor Topsøe in	
US 10570078	38
Figure 4.15 UPM's Luena biorefinery	39
Figure 4.16 Extraction of sugars and lignin from wood chips	41
Figure 5.2 Bio-based MEG four-step production sequence	43
Figure 5.3 Bio-MEG via the conventional four-step process from corn-Production cost vs.	
operating level	59
Figure 6.1 MEG from corn by the MOSAIK process—Block flow diagram	61
Figure 6.3 Fast pyrolysis system with flue gas particle reheater	88
Figure 6.4 MEG from corn by the MOSAIK process—Production cost vs. operating level Figure 7.2 Bio-MEG via corn wet milling and the Avantium hydrogenolysis process—Production	101
cost vs. operating level	129

Appendix D Figures

Figure 5.1 Bio-MEG by the conventional four-step process from corn—Process Flow Diagram	150
Figure 6.2 Production of MEG by the MOSAIK process—Process Flow Diagram (page 1 of 3)	151
Figure 6.2 Production of MEG by the MOSAIK process—Process Flow Diagram (page 2 of 3)	152
Figure 6.2 Production of MEG by the MOSAIK process—Process Flow Diagram (page 3 of 3)	153
Figure 7.1 Bio-MEG by Avantium hydrogenolysis—Process Flow Diagram (page 1 of 2)	154
Figure 7.1 Bio-MEG by Avantium hydrogenolysis—Process Flow Diagram (page 2 of 2)	155

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation and even use the full but in any way the fulle to any recipient for any incorrection corrections of any information. becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external websites. Copyright © 2022, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

