

Reduced Carbon Intensity and Renewable Methanol Production

PEP Report 43G December 2021

Dipti Dave Associate Director, Organic Intermediate Chemicals

Praveer Joshi Associate Director, Research and Analysis

Process Economics Program

Contacts

Dipti Dave

Associate Director, Organic Intermediate Chemicals dipti.dave@ihsmarkit.com

Praveer Joshi

Associate Director, Research and Analysis praveer.joshi@ihsmarkt.com

Michael Arné

Director, Process Economics Program michael.arne@ihsmarkit.com

PEP Report 43G

Reduced Carbon Intensity and Renewable Methanol Production

Dipti Dave, Associate Director, Organic Intermediate Chemicals **Praveer Joshi**, Associate Director, Research and Analysis

Abstract

Methanol is a large-volume commodity chemical that is a major building block for industrial and consumer products. In 2020, worldwide production was more than 131 MMt. Globally, methanol capacity has expanded over the past five years at an average rate of 3.5% a year, driven by new plants built in Northeast Asia, North America, and the Middle East. Mainland China alone accounted for 52% of the global capacity in 2020; it is also the sole producing country in the Northeast Asian region.

Our prior PEP Report 43F on conventional methanol production from natural gas was published in 2019. It covered four licensed technologies: Haldor Topsøe Autothermal Reforming, Casale and Lurgi's Combined Reforming, and Johnson Matthey/Davy Gas-Heated Reforming-based processes. In recent years, there has been significant research on reducing carbon emissions from methanol production.

The focus of this report is on renewable, low-carbon-intensity, or emission-free, methanol. These are precommercial technologies. We have examined three processes:

- Renewable small-scale power to methanol by using German company bse Methanol's *Flex*Methanol modules.
- Low CO₂ emission by natural gas two-stage reforming methanol production, based on the Johnson Matthey/Davy process, modified with RWGS.
- Biomass gasification from wood chips and two-stage reforming for methanol production.

The iPEP Navigator tool is attached to the electronic version of this report. The iPEP Navigator interactive module provides an economic snapshot for each process, allowing the user to select and compare processes, units, and regions of interest.

Contents

1	Introduction	7
2	Summary	8
	Technology features	8
	Renewable energy methanol process	8
	Low carbon dioxide emission methanol process	9
	Biomass-based methanol process	9
	Scope 1 carbon analysis	9
	Technical summary	10
	bse Methanol's technology	10
	Low carbon dioxide emission methanol process	11
	Biomass-based methanol process	12
	Selection of plant capacity	12
	Process economics	13
3	Industry status	16
	Producing companies	18
	Developing technology	19
	bse Methanol projects	19
4	Technology review	20
	PEP publications	20
	Introduction	20
	Conventional process technology	20
	Conventional versus renewable or low carbon	21
	Product properties	21
	Developing technologies	22
	bse Methanol technology	22
	Background	22
	Catalyst	26
	Proprietary equipment	27
	Plot plan including footprint	27
	Technology advantages	30
	Low carbon dioxide emission methanol	31
_	Biomass-based methanol	32
5	Methanol production by bse's <i>Flex</i> Methanol process	34
	Chemistry	34
	Feedstock specifications	34
	Reference 120 MW plant	36
	Process description—bse Methanol technology	37
	Section 100—Methanol synthesis Section 200—Methanol distillation	37 37
		38
	Hydrogen production (G-301) Process discussion	42
	Plant modularization	42
	Supporting plant sections	42
	Plant start-up boiler	42
	Feed and utility pricing	42
	By-product steam	42
	Materials of construction	43
	Cost estimates	45
	Capital costs	45
		40

	Production costs	48
6	Low carbon dioxide emission methanol production process	54
	Process description	54
	Section 100—Syngas production	54
	Section 200—Methanol production	58
	Section 300—RWGS section	59
	Process discussion	60
	Feedstock	60
	Unreacted syngas recycling	60
	Methanol converters sizing estimate	60
	Converters feed/product streams configuration and material balance	60
	Methanol product purification	61
	Steam consumption	61
	Plant start-up boiler	61
	Materials of construction	62
	Miscellaneous plant sections	62
	Cost estimates	72
	Fixed capital costs	72
	Production costs	73
	Process carbon emission	73
7	Biomass-based methanol production process	78
	Process description	78
	Section 100—Syngas production	78
	Drying and gasification	78
	Drying	79
	Gasification	79
	Char destruction	79
	Gas conditioning	79
	Section 200—Methanol production	80
	Process discussion	83
	Feedstock	83
	Capacity factors	83
	Drier selection	84
	Gasifier	84
	Combustor	84
	Ash agglomeration	84
	Gas conditioning	85
	Scrubbing	85
	Biosyngas reforming for methanol synthesis	85
	Converters feed/product streams configuration and material balance	85
	Methanol product purification	86
	Steam consumption	86
	Plant start-up boiler	86
	Materials of construction	87
	Waste streams	87
	Miscellaneous plant sections	87
	Cost estimates	96
	Fixed capital costs	97
	Production costs	97
A	Process carbon emission	97
	pendix A—Design and cost basis	102
	pendix B—Cited references	108
Ар	pendix C—Process flow diagrams	111

Tables

Table 2.1 Scope 1 carbon footprint analysis (process streams only)	9
Table 2.2 Process economics of plant configurations for methanol production on the USGC	14
Table 3.1 World top producers of methanol in 2020	19
Table 3.2 Ongoing projects that are in the public domain	19
Table 4.1 Major methanol-derived chemicals	20
Table 4.2 Methanol purity associated with the main industrial grades	21
Table 4.3 Specifications for federal AA-grade methanol	22
Table 4.4 Composition of crude methanol produced at the demonstrator plant	25
Table 4.5 Methanol synthesis skid	27
Table 4.6 Distillation skid	27
Table 4.7 Features of <i>Flex</i> Methanol	30
Table 5.1 Feedstock specifications	35
Table 5.2 Hydrogen properties	35
Table 5.3 Carbon dioxide properties	36
Table 5.4 bse Methanol process design bases and assumptions	39
Table 5.5 bse Methanol process stream flows	40
Table 5.6 Major equipment	44
Table 5.7 Utilities summary	45
Table 5.8 Waste effluents	45
Table 5.9 Total capital investment	47
Table 5.10 Capital investment by section	48
Table 5.11 Production costs	49
Table 5.12 bse Methanol location (Germany)—Production costs	51
Table 6.1 Low CO ₂ emission methanol production process—Design bases and assumptions	56
Table 6.2 Low CO ₂ emission methanol production process—Mainstream flows	63
Table 6.3 Low CO ₂ emission methanol production process—Major equipment	69
Table 6.4 Methanol production by Johnson Matthey/Davy two-stage reforming-based process-	
Utilities summary	72
Table 6.5 Low CO ₂ emission methanol production process—Total fixed capital	74
Table 6.6 Low CO ₂ emission methanol production process—Capital investment by section	75
Table 6.7 Low CO ₂ emission methanol production process—Production costs	76
Table 7.1 Biomass-based methanol production—Design bases and assumptions	82
Table 7.2 Biomass-based methanol production processs—Mainstream flows	88
Table 7.3 Biomass-based methanol production process—Major equipment	93
Table 7.4 Biomass-based methanol production process—Utilities summary	96
Table 7.5 Biomass-based methanol production process—Total fixed capital	98
Table 7.6 Biomass-based methanol production process—Capital investment by section	99
Table 7.7 Biomass-based methanol production process—Production costs	100

Figures

Figure 2.1 Process scheme of bse's power to methanol	11
Figure 2.2 Low CO ₂ emission methanol—Block flow diagram	12
Figure 2.3 FERCO (SilvaGas [®]) gasifier with methanol production—Block flow diagram	13
Figure 3.1 Companies involved in the research/development/production of bio methanol,	
renewable (green) methanol, and low-carbon methanol	16
Figure 3.2 World methanol production by raw material	17
Figure 3.3 World methanol consumption	17
Figure 3.4 World methanol capacity	18
Figure 4.1 Methanol process	21
Figure 4.2 Process scheme of power to methanol demonstrator	22
Figure 4.3 Photographs of the power-to-methanol demonstrator building, the wind turbine, and	
the electrolyzer	23
Figure 4.4 Photograph of the methanol synthesis demonstrator including the reactor, methanol	
separator, recycle gas compressor, and the process control	23
Figure 4.5 Tube bundle methanol synthesis reactor used within the demonstrator plant	24
Figure 4.6 GC-FID1 analyses and composition of crude methanol obtained from the demonstrator	
plant in recycle mode	25
Figure 4.7 Typical methanol catalyst (Cu/ZnO/Al ₂ O ₃) in pellet form (0.4mm)	26
Figure 4.8 Example layout for methanol synthesis	27
Figure 4.9 FlexMethanol and the distillation skids	29
Figure 5.1 Catalytic methanol synthesis from pure gases	34
Figure 5.3 Methanol product value varies with CO ₂ feedstock price	52
Figure 5.4 Methanol product value varies with CO ₂ feedstock price	53

Appendix C Figures

Figure 5.2 (Sheet 1 of 2) bse Methanol	112
Figure 5.2 (Sheet 2 of 2) bse Methanol	113
Figure 6.1 (Sheet 1 of 3) Low CO ₂ emission methanol production process	114
Figure 6.1 (Sheet 2 of 3) Low CO ₂ emission methanol production process	115
Figure 6.1 (Sheet 3 of 3) Low CO ₂ emission methanol production process	116
Figure 7.1 (Sheet 1 of 3) Biomass-based methanol production process	117
Figure 7.1 (Sheet 2 of 3) Biomass-based methanol production process	118
Figure 7.1 (Sheet 3 of 3) Biomass-based methanol production process	119

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient dor any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

