Hydrogen and Carbon Black by Methane Pyrolysis

PEP Review 2021-07
December 2021
Contacts

Mike Kelly
Director - Strategic Analytics & Process Technology
mike.kelly@ihsmarkit.com

Michael Arné
Director, Process Economics Program
michael.arné@ihsmarkit.com
PEP Review 2021-07

Hydrogen and Carbon Black by Methane Pyrolysis

Mike Kelly, Director – Strategic Analytics & Process Technology

Abstract

The carbon black industry has struggled to keep pace with both tightening environmental regulations and the incumbent technology relying on thermal-oxidative decomposition of heavy aromatic oils. Net-zero emissions targets and decarbonization ambitions are driving demand for sustainable technologies, and there continues to be considerable research and development effort dedicated to producing carbon black more efficiently, with improved product properties, and with less environmental impact.

Monolith Corporation is a leader in this space, having successfully commercialized its methane pyrolysis process utilizing an electric plasma torch to thermally decompose natural gas into carbon black and hydrogen. The Monolith plasma-based technology is combustion free and has a substantially reduced environmental footprint relative to traditional carbon black manufacturing. Monolith has a vision for its technology to play a key role in the pathway to net-zero through carbon-free hydrogen and clean carbon black.

In this review, a general overview of the Monolith technology is provided along with production and investment cost estimates for a plant sized at a capacity to produce 180,000 tons/yr of carbon black.
Contents

1 Introduction 6
2 Summary 7
 Technical aspects 7
 Economic aspects 8
3 Industry status 10
 Carbon black 10
 Hydrogen 13
4 Technology review 16
 Monolith story 16
 Feedstocks 17
 Products 18
 Carbon black 18
 Particle size 18
 Surface area 20
 Aggregate structure 20
 Hydrogen 20
 Chemistry 21
 Reactor 23
 Plasma torch 25
 Electrodes 28
 Process control 29
 Heat integration 31
 Treatment 34
5 Process economics 35
 Process description 35
 Section 100—Reaction and filtration 35
 Section 200—Product preparation 36
 Process discussion 41
 Capacity 41
 Reaction conditions 41
 Environment 42
 Optimization 42
 Cost estimates 42
 Capital costs 43
 Production costs 45
Appendix A—Patent summaries 49
Appendix B—Design and cost basis 57
Appendix C—Cited references 62
Appendix D—Patents by company 65
Appendix E—Process flow diagrams 67
Tables

Table 3.1 World supply/demand for carbon black
Table 3.2 World consumption of carbon black by end use
Table 3.3 World consumption of carbon black by region and end-use market
Table 3.4 World consumption of hydrogen by region
Table 4.1 Indicative relative power consumption and product output by feedstock
Table 4.2 Particle range of rubber-grade carbon black
Table 4.3 Grades, processes, and selected properties and uses of carbon black
Table 5.1 Design bases and assumptions
Table 5.2 Stream flows
Table 5.3 Major equipment
Table 5.4 Utility summary
Table 5.5 Total capital investment
Table 5.6 Total capital investment by section
Table 5.7 Production costs

Figures

Figure 2.1 Monolith methane pyrolysis block flow diagram
Figure 2.2 Capital intensity for selected hydrogen processes (1Q21 USGC basis)
Figure 2.3 Production costs for selected hydrogen processes (1Q21 USGC basis)
Figure 4.1 Chemical equilibrium in methane pyrolysis
Figure 4.2 Schematic mechanism of carbon black formation
Figure 4.3 Various plasma reactor configurations
Figure 4.4 Plasma torch configuration feeding a common collection header
Figure 4.5 Typical plasma torch configuration
Figure 4.6 Showerhead electrode configuration
Figure 4.7 DC plasma torch arrangement
Figure 4.8 Magnetic coil placement in a plasma torch
Figure 4.9 Plasma reactor circulation principles
Figure 4.10 High temperature heat recovery system
Figure 4.11 Plasma chamber cooling configurations
Figure 4.12 Resistive heating elements
Figure 5.1 Effect of plant capacity on investment costs
Figure 5.2 Net production cost as a function of operating level
Figure 5.3 Process flow diagram

Appendix E Figures

Figure 5.3 Process flow diagram