

Hydrogen and Carbon Black by Methane Pyrolysis

PEP Review 2021-07 December 2021

Process Economics Program

Contacts

Mike Kelly

Director - Strategic Analytics & Process Technology mike.kelly@ihsmarkit.com

Michael Arné

Director, Process Economics Program michael.arne@ihsmarkit.com

PEP Review 2021-07

Hydrogen and Carbon Black by Methane Pyrolysis

Mike Kelly, Director – Strategic Analytics & Process Technology

Abstract

The carbon black industry has struggled to keep pace with both tightening environmental regulations and the incumbent technology relying on thermal-oxidative decomposition of heavy aromatic oils. Netzero emissions targets and decarbonization ambitions are driving demand for sustainable technologies, and there continues to be considerable research and development effort dedicated to producing carbon black more efficiently, with improved product properties, and with less environmental impact.

Monolith Corporation is a leader in this space, having successfully commercialized its methane pyrolysis process utilizing an electric plasma torch to thermally decompose natural gas into carbon black and hydrogen. The Monolith plasma-based technology is combustion free and has a substantially reduced environmental footprint relative to traditional carbon black manufacturing. Monolith has a vision for its technology to play a key role in the pathway to net-zero through carbon-free hydrogen and clean carbon black.

In this review, a general overview of the Monolith technology is provided along with production and investment cost estimates for a plant sized at a capacity to produce 180,000 tons/yr of carbon black.

Contents

1	Introduction	6
2	Summary	7
-	Technical aspects	7
	Economic aspects	8
3	Industry status	10
Ŭ	Carbon black	10
	Hydrogen	13
4	Technology review	16
1	Monolith story	16
	Feedstocks	17
	Products	18
	Carbon black	18
	Particle size	18
	Surface area	20
	Aggregate structure	20
	Hydrogen	20
	Chemistry	21
	Reactor	23
	Plasma torch	25
	Electrodes	28
	Process control	29
	Heat integration	31
	Treatment	34
5	Process economics	35
	Process description	35
	Section 100—Reaction and filtration	35
	Section 200—Product preparation	36
	Process discussion	41
	Capacity	41
	Reaction conditions	41
	Environment	42
	Optimization	42
	Cost estimates	42
	Capital costs	43
	Production costs	45
App	pendix A—Patent summaries	49
App	pendix B-Design and cost basis	57
App	bendix C-Cited references	62
App	pendix D-Patents by company	65
App	bendix E–Process flow diagrams	67

Tables

11
11
12
15
17
19
19
37
38
39
41
44
45
47

Figures

7
8
9
21
22
23
24
26
27
28
29
31
32
33
34
43
46

Appendix E Figures

Figure 5.3 Process flow diagram

68

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient dor any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

