

Deep Catalytic Cracking (DCC)

PEP Review 2022-06 December 2022

Contacts

Soumitro Nagpal

Executive Director, Process Economics Program soumitro.nagpal@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Review 2022-06

Deep Catalytic Cracking (DCC)

Soumitro Nagpal, Executive Director

Abstract

The decreasing demand growth for transportation fuels coupled with an expectation for continued petrochemical demand growth will result in many refiners looking for options to increase conversion of crude oil to petrochemicals. Currently, fluid catalytic cracking (FCC) catalyst formulation and process technology improvements give refiners the flexibility to significantly increase propylene yields from that obtained in gasoline mode operation. Projected decrease in propylene supply growth from steam cracking, the primary source of propylene production, also opens potential opportunities for high-olefins FCC to help fill the propylene supply-demand gap.

Deep catalytic cracking (DCC) is a commercially well-proven FCC process for cracking a wide range of hydrocarbon feedstocks, such as gasoils and paraffinic residues to propylene, butylenes, high-octane aromatic-rich gasoline, and ethylene. The process allows enhancing propylene yield from 4–6 wt% obtained in the conventional FCC, operating in gasoline mode, to over 20 wt%.

PEP has, in the past few years, reviewed several such high-olefins FCC technologies. PEP Report RP195B covered in detail KBR MAXOFIN[™], UOP PetroFCC[™], and CB&I/Lummus Selected Component Cracking (SCC) processes. PEP Report RP195C covered Axens/TechnipFMC HS-FCC[™], Lummus/IOCL Indmax (I-FCCSM), and Reliance MCC processes. While PEP had earlier reviewed the DCC process in 1999 in RW1997-7, we decided to update this review to cover recent developments in this technology and elucidate how it can fit in with evolving refinery needs to increase propylene and other base chemicals production directly from crude oil. The focus of this review is on the new DCC-Plus variant that maximizes propylene yield.

The review has five chapters starting with an introduction. Chapter 2 provides an executive summary. Chapter 3 looks at propylene market supply-demand trends and the contribution of high-olefins FCC units, such as DCC, on the global and regional production capacity of propylene. Chapter 4 gives an overview of high-olefins FCC technology and discusses process chemistry, catalysts used, developments in DCC catalyst, history of DCC technology development and commercialization, and the new DCC process variants. We present a detailed techno-economic evaluation of the DCC-Plus variant in Chapter 5. This includes a design basis, heat and material balances, process flow diagrams (PFDs), sized equipment list, inside battery limits (ISBL), outside battery limits (OSBL), and total fixed investment estimates, and polymer-grade propylene production cost via this route.

Contents

1	Introduction	6
2	Summary	7
	PEP DCC-Plus evaluation	8
	Cost estimates	9
3	Industry status	11
4	Technical review	18
	High olefins cracking chemistry	18
	Catalysts	21
	DCC catalysts	25
	Inhibitors	28
	History of DCC technology development and commercialization	28
	Start-up of first DCC unit at Jinan refinery	29
	Shandong-Yulong DCC	30
	DCC technology	31
	New DCC platform	33
	DCC-Plus	33
	DCC-Pro	36
	Catalytic pyrolysis process	37
	Processing unconventional feeds	39
5	DCC-Plus process evaluation and economics	41
	Process description	43
	Section 100—Reactor, regenerator and main fractionator	44
	Section 200—Light ends separation	45
	Section 300—Propylene recovery	47
	Process discussion	47
	Reactor-regenerator heat balance	48
	Overall unit heat and mass balance	50
	Feed preheat and main fractionator	50
	Propylene recovery	51
	Ethylene recovery	52
	Cost estimates	61
	Comparison with DCC capex estimated in RW1997-7	67
	Comparison with other high-olefins FCC technology	68
Ар	pendix A—Cited references	70
Ар	pendix B—Process flow diagrams	74

Tables

Table 4.1 BTX content of heavy naphtha from petrochemical processes	23
Table 4.2 DCC catalysts	27
Table 4.3 List of commercial DCC units	30
Table 4.4 Shandong-Yulong DCC product vields	31
Table 4.5 General comparison between DCC and FCC	32
Table 4.6 Typical operating conditions of FCC, DCC, CPP, and steam cracker	33
Table 4.7 DCC-Plus unit product vields at Daxie refinery	36
Table 4.8 Comparison of typical yields of DCC with conventional FCC	36
Table 4.9 DCC-Pro mode product yields	37
Table 4.10 CPP commercial test operating conditions and yields	39
Table 5.1 DCC-Plus design basis	42
Table 5.2 Reactor-regenerator heat balance	49
Table 5.3 DCC-Plus heat and material balance	53
Table 5.4 DCC-Plus equipment list	57
Table 5.5 Utility summary	61
Table 5.6 Total capital investment (USGC)	63
Table 5.7 Capital investment by section (USGC)	64
Table 5.8 Variable costs—USGC location	66
Table 5.9 Production costs (USGC)	67
Table 5.10 Comparison with earlier PEP DCC evaluation*	68
Table 5.11 Comparison with earlier PEP high-olefins FCC evaluations	69

Figures

Figure 3.1 World propylene capacity and production	12
Figure 4.1 FCC yield variation with riser temperature	20
Figure 4.2 FCC vs. DCC light olefins yields	20
Figure 4.3 DCC light olefin yields variation with feed hydrogen content and reactor temperature	21
Figure 4.4 Structure of Y-type and ZSM-5 zeolites	24
Figure 4.5 Hydrogen transfer reactions on zeolite catalysts	24
Figure 4.6 Impact of ZSM-5 on FCC product yields	25
Figure 4.7 Sinopec RIPP DCC-Plus reactor-regenerator process scheme	35
Figure 5.1 Heat of reaction for DCC-Plus and other FCC cases	50

Appendix B Diagrams

Figure B1 DCC Process flow diagram—Section 100 Reactor, regenerator, and main fractionator	75
Figure B2 Process flow diagram—Section 200 Light ends separation	76
Figure B3 DCC Process flow diagram—Section 300 Propylene recovery	77

Customer Care CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +81 3 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer
The information contained in this report is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by
any means, without the prior written permission of IHS Markit or any of its affiliates ('IHS Markit') is strictly prohibited. IHS Markit owns all IHS Markit logos
and trade names contained in this report that are subject to license. Opinions, statement, estimates, and projections in this report (including other media) are
solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has
any obligation to update this report in the event that any content, opinion, statement, estimate, or projection (collectively, 'information') changes or
subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in
this report, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no
liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party,
whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit and not the understood to be an
endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external
websites. Copyright © 2022, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

