KBR K-COT™ Catalytic Cracking Technology

PEP Review 2020-04
February 2020

Rajeev Singh
Principal Research Analyst
Abstract
The ever-increasing demand for ethylene and propylene monomer in the petrochemical market, coupled with the decreasing demand of refinery products has urged the petrochemical producers to look for a competitive, alternative technology to produce ethylene and propylene from low-value hydrocarbon stream. This technology will also balance the demand upset caused by the use of shale gas as feed for olefins production.

KBR K-COT™ is one such technology, which is based on fluid catalytic cracking (FCC) of low-value olefinic, paraffinic, and mixed stream of hydrocarbon to produce high-value ethylene, propylene, and aromatic-rich gasoline. This review examines the technology and economics of K-COT™, which is being licensed by KBR under the olefin’s technology portfolio.

K-COT™ is an alternative technology to steam(thermal) cracking for the production of light olefins, which can be used in a standalone way or in combination with traditional steam cracker. Olefins plant based on K-COT™ technology uses KBR Orthoflow™ FCC converter and a proprietary catalyst which provides high yields of ethylene and propylene compared to traditional FCC reactors. Effluent from the converter is treated and separated in recovery section with features like front-end depropanizer, front-end acetylene reactor, low-pressure column operation, heat pump system, and advanced fractionation technique, which help to reduce equipment count and specific energy consumption.

This review evaluates the KBR K-COT™ technology for production of 800 KTA (1,762 million lb/yr) of polymer grade ethylene. The evaluation of technology starts with briefly reviewing the technical insights of K-COT™ technology and thereafter, a more detailed analysis on process flow scheme, process description, heat and material balance, utility consumption, and equipment size are provided. The review process ends with CAPEX, OPEX, and the cost of production of ethylene from using K-COT™ Technology.
Contents

1. **Introduction**
2. **Summary**
 - K–COT™ features
 - K-COT™ converter
 - K-COT™ process
 - K-COT™ process economics
3. **Industry review**
 - History of KBR
 - MAXOFIN™ process
 - SUPERFLEX™ process
 - ACO™ process
 - K-COT™ process
4. **Technical review**
 - Feedstock
 - Products
 - Chemistry
 - Hydrocarbon cracking (β scission)
 - Hydrogen transfer
 - Coke production
 - Catalyst
 - Hardware and configuration
 - Riser
 - Riser termination and disengager
 - Stripper
 - Standpipe
 - Regenerator
 - Third stage separator
 - Technology features for SCORE™ furnace and recovery section
5. **Process review and economics**
 - Process design basis
 - Product yield
 - Process description
 - Section 1000: Feed pretreatment
 - Section 1100: K-COT™, SCORE™, and steam generation
 - Section 2000: Quench and dilution steam generation
 - Section 3000: Compression, drying, and depropanizer
 - Section 4000: De-methanizer and cold box
 - Section 5000: C₂ Separation and ethylene refrigeration
 - Section 6000: C₃ Separation and propylene refrigeration
 - Section 7000: Steam distribution
 - Utility summary
 - Cost estimation
 - Fixed-capital costs
 - Production costs
 - Economic comparison
 - Carbon emissions and water usage
Tables

Table 2.1 Capital investment 8
Table 2.2 Cost of production of ethylene 8
Table 3.1 KBR Olefins technology processes 11
Table 4.1 Catalyst properties (US 0267606) 17
Table 5.1 KBR Catalytic Olefins Technology K-COT™—Design bases 22
Table 5.2 K-COT™ converter ultimate yields 24
Table 5.3 Single pass yield for K-COT™ converter 25
Table 5.4 Single pass yield for SCORE™ furnace 26
Table 5.5 Material balance 35
Table 5.6 Major equipment list 54
Table 5.7 Utility summary 62
Table 5.8 Total capital investment cost 64
Table 5.9 Ethylene production cost 65
Table 5.10 Carbon and water footprint 67

Figures

Figure 1.1 Global ethylene and propylene demand 5
Figure 2.1 Cost of production of ethylene 9
Figure 4.1 KBR's Proprietary Closed Cyclone 19
Figure 4.2 Third stage separator 20
Figure 5.1 K-COT™ converter ultimate yields 24
Figure 5.2 KBR Orthoflow™ converter 28

Appendix C Figures

Figure 2.2 Block flow diagram 76
Figure C.1 (Sheet 1 of 10) KBR K-COT catalytic cracking technology 77
Figure C.1 (Sheet 2 of 10) KBR K-COT catalytic cracking technology 78
Figure C.1 (Sheet 3 of 10) KBR K-COT catalytic cracking technology 79
Figure C.1 (Sheet 4 of 10) KBR K-COT catalytic cracking technology 80
Figure C.1 (Sheet 5 of 10) KBR K-COT catalytic cracking technology 81
Figure C.1 (Sheet 6 of 10) KBR K-COT catalytic cracking technology 82
Figure C.1 (Sheet 7 of 10) KBR K-COT catalytic cracking technology 83
Figure C.1 (Sheet 8 of 10) KBR K-COT catalytic cracking technology 84
Figure C.1 (Sheet 9 of 10) KBR K-COT catalytic cracking technology 85
Figure C.1 (Sheet 10 of 10) KBR K-COT catalytic cracking technology 86