

Processing Lean Natural Gas

PEP Review 2021-01 January 2021

Process Economics Program

Contacts

Rajiv Narang

Executive Director rajiv.narang@ihsmarkit.com

RJ Chang

Vice President, Process Economics Program rj.chang@ihsmarkit.com

PEP Review 2021-01

Processing Lean Natural Gas

Rajiv Narang, Executive Director

Abstract

The traditional approach for processing sour gas is to utilize solvent systems for natural gas cleanup and employing Claus technology for conversion of H_2S to elemental sulfur. However, this technology is difficult to operate and could be uneconomical for lean natural gas, which has high amounts of H_2S and CO_2 . There are ultra-sour fields in the world that are underexploited because of poor economics. Operating companies are in search of solutions to process these resources.

In the past, membranes could be used for the removal of H_2S and CO_2 only when the acid gas sulfur levels are low. But some wellhead sources of natural gas may contain sour gas components as high as 80%. In combination with water, these gas streams are highly corrosive and can rapidly destroy pipelines and equipment, unless they are removed. Otherwise, exotic and expensive construction materials are required. Before entering distribution pipelines, natural gas needs to be purified from the acid gases, CO_2 and H_2S , to prevent pipeline corrosion. Next to being corrosive, H_2S is also highly toxic, thus allowing permissible limits to be in small traces (<4ppm) only. For CO_2 , the pipeline specification is often set at 2% or 3%, with an additional reduction required (<50 ppm) if the gas is turned into liquefied natural gas (LNG).

Some companies have developed polymeric membranes that can be used for bulk H₂S removal from natural gas, even at very high H₂S concentrations and high operating pressures. This approach allows for more sustainable development of new sour gas fields or for retrofitting existing applications. The membrane system can be used to either treat the gas to meet pipeline specifications or make a bulk cut of acid gases, and then the final pipeline specifications can be met using the traditional amine processes or other traditional follow-on operations. Ideally, the permeate gas from the membrane system is reinjected as opposed to being converted to elemental sulfur. This hybrid approach has been considered by some studies to be more economical.

This report addresses the treatment of lean natural gas in an onshore location using membrane technology utilizing polyether-block-amide (PEBAX[®]) material as membrane, followed by absorption using Methyl diethanolamine (MDEA) as a solvent. The analysis is carried out for a 350 MMscfd of ultra-sour lean natural gas containing 20% of H₂S and 20% of CO₂. A material balance table, an equipment list with sizes, and process flow diagrams are also included in the report. A simulation was carried out using ProMax[®] version 5.0. An Excel-based tool, iPEP Navigator[®] is also provided for easy economic analysis in different regions of the world.

The technological and economic assessment of the process is IHS Markit PEP's independent interpretation of a potential commercial process based on information presented in the open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. IHS Markit PEP believes that they are sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.

Contents

1	Introduction	5
	Background	5
	Previous analyses	5
	Current analysis	6
2	Summary	8
3	Process economics	11
	Introduction	11
	Natural gas reserves	11
	Commercial status	12
	Global consumption	12
	Global production	13
	Historical pricing	15
	Gas treatment plants	15
	Technology review	19
	Treatment of natural gas	19
	Membranes	22
	Membrane morphology	28
	Gas separation membrane properties	29
	Commercial membranes	31
	Engineering membrane modules	32
	Conventional acid gas removal processes	34
	Chemical solvents	36
	Chemistry of alkanolamines solutions	37
	Acid gas loading	38
	Methyldiethanolamine (MDEA)	39
	Hybrid process	40
	Comparison with amine treatment	41
	Process description	43
	Design basis	43
	Process design	44
	Process discussion	46
	Material of construction	46
	Cost estimates	47
	Fixed capital costs	47
	Production costs	47
	Economics discussion	48
	Carbon and water footprint	52

Tables

Table 2.1 Summary of process economics	9
Table 3.1 H ₂ S removal plants with capacity 100 to 350 MMscfd	16
Table 3.2 List of reservoirs with high H ₂ S and CO ₂ content	19
Table 3.3 Specifications for the US natural gas pipeline network	19
Table 3.4 Technologies for contaminant removal in natural gas	20
Table 3.5 Major applications and manufacturers of membrane systems	28

Table 3.6 Commercial membranes for natural gas treatment	31
Table 3.7 Operating parameters of alkanolamine solvents	39
Table 3.8 Design basis	44
Table 3.9 Stream balance lbs/hr	45
Table 3.10 Lean natural gas treatment—Major equipment	49
Table 3.11 Utility summary	50
Table 3.12 Lean natural gas treatment—Total capital investment	50
Table 3.13 Lean natural gas treatment—Capital investment by section	51
Table 3.14 Lean natural gas treatment—Variable costs	51
Table 3.15 Lean natural gas treatment—Production costs	52
Table 3.16 Carbon footprint	53
Table 3.17 Water footprint	53
Table 3.18 Waste stream summary	53

Figures

Figure 2.1 Block flow diagram of the hybrid process scheme	8
	0
Figure 2.2 Variation of fixed cost with respect to plant capacity	9
Figure 2.3 Variation of production cost with respect to capacity utilization	10
Figure 3.1 World production of natural gas	13
Figure 3.2 World consumption of natural gas	14
Figure 3.3 Natural gas prices, \$/MMBtu	15
Figure 3.4 Process flow schematic for the amine-Claus process for large land-based gas fields	21
Figure 3.5 Application envelopes for absorption and membrane processes to treat sour gas	23
Figure 3.6 Typical membrane separation	26
Figure 3.7 Sorption model for nonporous polymer membrane	26
Figure 3.8 Membrane separation for gases	27
Figure 3.9 Membrane morphologies	29
Figure 3.10 Permeability vs selectivity	30
Figure 3.11 Cellulose acetate polymer structure	31
Figure 3.12 PEBAX [®] polymer structure	32
Figure 3.13 Hollow fiber membrane development	33
Figure 3.14 Spiral wound module construction	34
Figure 3.15 Acid gas removal processes	34
Figure 3.16 Typical acid gas absorption using chemical solvents	35
Figure 3.17 Typical acid gas absorption using physical solvents	36
Figure 3.18 Chemical structure of primary, secondary, and tertiary amines	36
Figure 3.19 Molecular structure of MDEA	39
Figure 3.20 Block flow diagram of the hybrid process scheme	40
Figure 3.21 Regression analysis of amine flow rate and capex	41
Figure 3.22 Regression analysis of membrane area and capex	42
Figure 3.23 Regression analysis of membrane area and opex	42

Appendix C Figures

Figure C.1 Process flow diagram

62

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information Increasing into markit shall have no liability whatsdever to any recipient, whether in contract, in tort (including negligence), under statility under statility under statility or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their product/services). IHS Markit is not responsible for either the content or output of external websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

