

Sulfur forming— Granulation process

PEP Review 2021-03 January 2021

Process Economics Program

Contacts

Subodh Sarin

Director—Strategic Analytics & Process Technology subodh.sarin@ihsmarkit.com

RJ Chang

Vice President, Process Economics Program rj.chang@ihsmarkit.com

PEP Review 2021-03

Sulfur reforming—Granulation process

Subodh Sarin, Director

Abstract

Global sulfur production rose from about 42 million metric tons to 63 million metric tons from 2000 to 2017, a rise of approximately 2% p.a. It is expected to rise at the same rate for the next few years and reach approximately 68 million metric tons by 2022. About half of this sulfur is traded internationally. The major areas where sulfur production will increase are Canada (Oil Sands) and the Middle East. (Bala Suresh et. al, 2017).

About 70% of the sulfur produced is a by-product of hydrocarbon processing. In oil refineries and gas plants, the sulfur in the feed ends up in the Sulfur Recovery Unit (SRU) as H_2S and the output of the SRU unit is molten sulfur.

It is viable to transport molten sulfur over short distances only. For an overwhelming proportion of the sulfur trade, it is necessary to solidify this sulfur into forms suitable for handling and transport. For the refinery (or gas plant), the produced sulfur is a "nuisance" product, not a profit center. Separate organizations often take this molten sulfur from the refinery and manage the subsequent handling and marketing themselves.

Slating, granulation, prilling, and pastillation are some of the technologies used to produce solid sulfur from molten sulfur.

This review addresses the technology and economics of one such process—the granulation process. This review presents a technical and economic evaluation of the granulation process, for a plant with a processing capacity of 1,500 Mtpd sulfur. The selected capacity is suitable for sulfur produced in two 300,000 bbl/day refineries processing medium sour crude.

This review provides insight into the granulation plant technology and economics. It can be used as a tool for cost estimation for different plant capacities. It will be beneficial for planners, producers, and designers who are looking for independent data for sulfur granulation plants.

It includes the process flow diagram, material balance, major equipment sizes, and specifications. Cost data, including battery limit and offsite costs, variable costs, capex, opex, and overall production costs, is provided. An interactive iPEP Navigator module of the process is included, which provides a snapshot of the process economics and allows the user to select the units and global region of interest.

The technological and economic assessment of the process is IHS Markit PEP's independent interpretation of a commercial process based on information presented in the open literature (such as patents or technical articles) or in-house generated data (e.g., HYSYS simulation, equipment cost estimation). While this assessment may not reflect the actual plant data in whole, IHS Markit PEP believes that it is sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of a chemical process design.

Contents

1	Introduction	5
2	Summary	8
3	Industry status	9
	3.1 Trade	9
	3.2 Uses of sulfur	11
	3.3 Sulfur forming projects	11
4	Technology review	16
	4.1 Sulfur	16
	Properties	16
	Why solidification?	16
	Solidification options	16
	Comparison of technologies ^(6,7)	19
	4.2 Sulfur forming plant—components and design considerations	20
	Molten sulfur feedstock	20
	Molten sulfur receiving, unloading, storage, and pumping	20
	4.3 Selection of forming technology	21
	4.4 Patent review	21
5	Process review: Sulfur forming—Granulation process	22
	5.1 Basis of design	22
	5.2 Notes for the basis of design	22
	Capacity	22
	Product quality	22
	Process description	23
	Section 100—Molten sulfur handling	23
	Section 200—Granulator	24
	Sulfur forming section	24
	Dust collection system	24
	Section 300—Solid sulfur handling	24
	Offsites	24
	General service facilities	25
	Stream flows	25
	Cost estimates	27
	Fixed capital costs	27
	Production costs	28
	Design and cost basis	32
	Design conditions	33
	Cost bases	33
	Capital investment	33
	Project construction timing	35
	Available utilities	35
	Production costs	35
	Effect of operating level on production costs	36

Tables

Table 2.1 Process economics summary	8
Table 3.1 World production of sulfur	9
Table 3.2 World imports of sulfur	10
Table 3.3 World exports of sulfur	10
Table 3.4 Sulfur forming projects 2020	11
Table 3.5 Sulfur forming projects 2017–20	12
Table 3.6 Number of plants and capacity supplied by some vendors	15
Table 3.7 Technology for sulfur forming used in the total number of plants and total tonnage	15
Table 3.8 Capacity for sulfur forming technologies	15
Table 4.1 Comparison of technologies	20
Table 4.2 Specification for molten sulfur	20
Table 5.1 Design basis and assumptions—Sulfur forming by granulation process	22
Table 5.2 Specifications of the sulfur forming unit selected	22
Table 5.3 Product specifications	23
Table 5.4 Stream flows	25
Table 5.5 Major equipment	26
Table 5.6 Utility summary	27
Table 5.7 Capital cost sulfur forming—Granulation	28
Table 5.8 Capital cost by section—Sulfur forming by granulation	29
Table 5.9 Production costs—Sulfur forming by granulation	30
Table 5.10 Carbon and water footprint	31

Figures

Figure 1.1 Bulk storage of sulfur	6
Figure 4.1 Types of formed sulfur	17
Figure 4.2 Basic principle of Drum Granulator	18
Figure 4.3 Basic principle of pastillization	19

Appendix D Figures

Appendix D.1 Process flow diagram: Sulfur forming—Granulation process	42
Appendix D.2 Process flow diagram: Granulator package detail	43

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient ther any indicutation with any information provided, or any course of action determined, by it or any third party, whether or not based on any information mitor mation provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

