Low Carbon Ethylene Production via E-furnace Powered by NET Power Cycle

PEP Review 2022-04
December 2022

Subodh Sarin
Director

Rajeev Singh
Principal Research Analyst

Process Economics Program
Contacts

Subodh Sarin
Director, Process Economics Program
subodh.sarin@ihsmarkit.com

Rajeev Singh
Principal Research Analyst, Process Economics Program
rajeev.singh@ihsmarkit.com

Michael Arné
Vice President, Process Economics Program
michael.arne@ihsmarkit.com
Low Carbon Ethylene Production via E-furnace Powered by NET Power Cycle

Subodh Sarin, Director
Rajeev Singh, Principal Research Analyst

Abstract

Steam cracking of hydrocarbons is one of the largest carbon dioxide (CO₂)-emitting processes in the chemicals industry. Conventional cracking generates 0.85–1.8 metric tons of CO₂ for every metric ton of ethylene produced. Globally, that amounts to more than 260 million metric tons (MMt) of CO₂ emissions per year.

It appears inevitable that there will be an increased focus on the development of net-zero carbon emission ethylene production processes; either by using redesigned net-zero-emission technologies or by capturing and sequestering the CO₂ produced in the conventional processes.

In this review, we examine one such process for manufacture of ethylene from ethane. The cracking furnace is electrified and is powered by zero-emission electricity produced by NET Power cycle.

The CO₂ captured in the NET Power cycle is disposed of, either by sequestration, or it is used as a chemical raw material by others.

The selected configuration will reduce atmospheric emission of CO₂ by approximately 1.1 million metric tons per annum (MMtpa), over the conventional process for 1.5 MMtpa ethylene production. We have also computed levelized cost of carbon abatement (LCCA), which will be useful to the reader for comparative economic analysis with other net-zero carbon configurations for ethylene production.

This review is part of a series that IHS Markit plans to publish on ethylene technologies with the potential to reduce carbon emissions by 90% or more. This set of reviews will be a valuable resource for planners, producers, and designers who are looking for an authentic comparison of comparative capital and production costs for different strategies of deep carbon emission reduction for ethylene production.
Contents

1 Introduction 6
2 Summary 8
 Process economics 9
 Levelized cost of production (LCOP) for ethylene 10
 Levelized cost of carbon abatement (LCCA) 10
 Conclusion and analysis 11
3 Industry status 13
 Characteristics of the market 15
 Carbon capture market overview 16
 Levelized cost of carbon abatement 17
4 Technology review 18
 Scope definition of carbon emissions 18
 Net-zero carbon emission ethylene production in steam cracker 18
5 Process review 24
 Basis of design 24
 Process description 26
 Section 100—Feedstock pretreatment 27
 Section 200—Steam cracking and quench 27
 Section 300—Cracked gas compression and acid gas removal 28
 Section 400—Cryogenic refrigeration and cold box 28
 Section 500—Cryogenic distillation and hydrogen purification 29
 Section 600—Electric power via NET Power 29
 Section 700—Steam balance 30
 Stream balance 30
 Major equipment 37
 Process discussion 41
 E-furnace section 41
 Energy balance across plant 42
 Steam cracker recovery section design 43
 Specific energy consumption 44
 CO₂ emissions reduced and CO₂ sequestered 44
 Impact of CO₂ credits, tax credits, and sequestration cost on LCOP and LCCA 46
 Levelized cost of production for ethylene 46
 Conclusions from Table 5.9 47
 Conclusions from Table 5.10 49
 Levelized cost of carbon abatement 50
 Cost estimates 50
 Fixed capital costs 51
 Production costs 54
 Levelized cost of carbon abatement 55
Appendix A—Design and cost basis 57
 Design conditions 58
 Cost bases 58
 Capital investment 58
 Production costs 59
 Effect of operating level on production costs 60
Appendix B—Cited references 61
Appendix C—Process flow diagrams 63
Tables

Table 2.1 Comparison summary for 1.5 MMtpa ethylene production(2)
Table 2.2 Conclusion and analysis
Table 3.1 World capacity/consumption for ethylene
Table 3.2 World consumption of ethylene by end use
Table 5.1 Design bases and assumptions
Table 5.1a Steam cracker furnace yields (wt%)
Table 5.2 Stream balance (lb/hr)
Table 5.3 Major equipment
Table 5.4 Electrical load of plant
Table 5.5 Tail gas stream composition and distribution
Table 5.6 Composition, quantity, and duty of natural gas import
Table 5.7 Specific energy consumption
Table 5.8 CO₂ emissions reduced, and CO₂ sequestered
Table 5.9 LCOP ethylene—EOR case
Table 5.10 LCOP ethylene—Secure geological storage
Table 5.11 Total capital investment
Table 5.12 E-cracker using NET Power—Sectional capital investment
Table 5.13 E-cracker using NET Power—Variable costs
Table 5.14 E-cracker using NET Power—Production costs

Figures

Figure 2.1 Ethylene production via e-furnace powered by NET Power cycle
Figure 2.2 Configuration from RW2022-03
Figure 2.3 Configuration from RW2022-05
Figure 3.1 Carbon-capture capacity and technology
Figure 3.2 Cost metrics and drivers for carbon capture and storage
Figure 4.1 Block flow diagram for conventional amine-based capture of CO₂ from flue gas
Figure 4.2 Block flow diagram for hydrogen recycled as fuel
Figure 4.3 Block flow diagram for oxyfuel combustion
Figure 4.4 Block flow diagram for hydrogen-fired furnace with methane reforming
Figure 4.5 Block flow diagram for net-zero e-furnace configuration
Figure 5.1 Block flow diagram of e-furnace cracker with NET Power cycle
Figure 5.2 E-furnace section
Figure 5.3 CO₂ emissions reduced, and CO₂ sequestered

Appendix C Figures

Figure C Ethylene via ethane steam cracking (Sheet 1 of 7)
Figure C Ethylene via ethane steam cracking (Sheet 2 of 7)
Figure C Ethylene via ethane steam cracking (Sheet 3 of 7)
Figure C Ethylene via ethane steam cracking (Sheet 4 of 7)
Figure C Ethylene via ethane steam cracking (Sheet 5 of 7)
Figure C Ethylene via ethane steam cracking (Sheet 6 of 7)
Figure C Ethylene via ethane steam cracking (Sheet 7 of 7)