Polycarbonate Update

PEP Report 50F

February 2020

Susan Bell
Director of Polymer Processes

P.D. Pavlechko
Principal Analyst

Process Economics Program
PEP Report 50F

Polycarbonate Update

Susan Bell, Director of Polymer Processes
P.D. Pavlechko, Principal Analyst
With contribution from R.J. Chang

Abstract

Polycarbonate is one of the most versatile, high-performance resin due to its unique combination of properties including high impact strength, high heat resistance, and transparency. These properties have allowed polycarbonate to outperform other transparent polymers in various applications. In 2019, the global demand for polycarbonate was 4.4 million tpy with total capacity at 5.6 million tpy. The demand is forecasted to increase by 17% over the next 5 years, going from 4.4 million tpy in 2019 to 5.1 million tpy in 2024. However, capacity is forecasted to far exceed demand growth. The capacity is expected to increase from 5.6 million in 2019 to 8.0 million tpy in 2024, which is equivalent to a 42% increase in capacity. Almost all of the new capacity is expected in China. New polycarbonate plants are being built in China based on the interfacial and melt processes. For the interfacial process, bisphenol A (BPA) is phosgenated in an aqueous solution of sodium bisphenolate with methylene chloride as an organic solvent. For the melt process, BPA reacts with diphenyl carbonate (DPC) in a molten state without the solvent. Historically, interfacial phosgenation, or the conventional interfacial process, has dominated the field. The non-phosgene melt technology is projected to have the fastest growth rate in the future.

With the number of new plants being built, rationalization of plants with relatively high cost of production is a strong possibility. This report will provide a timely update of polycarbonate production technologies and estimated process economics. In this report, we will update the process economics and technology to produce polycarbonate by the following processes:

• Polycarbonate production by an integrated melt process consisting of diphenyl carbonate (DPC) production based on Asahi Kasei technology and polycarbonate (PC) based on EPC technology

• Polycarbonate production by an integrated melt process consisting of diphenyl carbonate (DPC) production based on Versalis/Lummus technology and polycarbonate (PC) based on EPC technology

• Polycarbonate production by a plug flow interfacial process by phosgenation.
Contents

1 Introduction 9

2 Summary 11
 Introduction 11
 Industrial aspects 11
 Supply and demand 11
 Polycarbonate producers 13
 Polycarbonate capacity by process 13
 Polycarbonate technology licensors 14
 Technical aspects 14
 Polycarbonate production by an integrated process consisting of Versalis/Lummus’ DPC and EPC’s melt PC process 14
 Polycarbonate production by an integrated process consisting of Versalis/Lummus’ DPC and EPC’s variPLANT® PC (melt) process 16
 Polycarbonate production by a plug flow interfacial process 17
 Economic aspects 18

3 Industry status 22
 Introduction 22
 World capacity 22
 Capacity by process 22
 Capacity by region 23
 Capacity by company 24
 Supply and demand 28
 Polycarbonate technology licensors 28
 Polycarbonate prices 29

4 Technology 30
 Introduction 30
 Polycarbonate properties 30
 Polycarbonate production 32
 Polycarbonate production by the interfacial process 32
 Polycarbonate production by the melt process 34
 Diphényl carbonate production 37
 Conventional DPC production using phosgene 38
 DPC production from dimethyl carbonate (DMC) by ester exchange with phenol or phenyl acetate 38
 DMC production 40
 DMC production from oxidative carbonylation of methanol 40
 DMC production from oxirane 41
 DPC production from phenol via diphenyl oxalate (DPO) 42
 DPC production from phenol by direct oxidative carbonylation 42

5 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process 44
 Introduction 44
 Process description 44
 Section 100—Liquid phase CO₂ production and purification 59
 Section 200—Ethylene carbonate production 60
Process discussion

Section 300—Dimethyl carbonate production	60
Section 400—Diphenyl carbonate production	60
Section 500—Polycarbonate production	61
Section 600—Compounding and bulk handling	62

Cost estimate

Plant design capacity	68
Onstream factor	68
Methanol feedstock	74
Polycarbonate product	74
Plant configuration	74
Liquid phase CO₂ production and purification	74
Ethylene carbonate production	74
Dimethyl carbonate production	74
Diphenyl carbonate production	74
Polycarbonate production	74
Compounding and bulk handling	74
Energy efficiencies	74
Material of construction	74
Waste treatment	74

Process discussion

6 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process

Section 100—Diphenyl carbonate production	86
Section 200—Polycarbonate production	87
Section 300—Compounding and bulk handling	87

Process discussion

Plant design capacity	87
Onstream factor	87
Dimethyl carbonate feedstock	87
Phenol feedstock	87
Bisphenol A feedstock	87
Polycarbonate product	87
Plant configuration	87
Diphenyl carbonate production	87
Polycarbonate production	87
Compounding and bulk handling	87
Energy efficiencies	87
Material of construction	87
Waste treatment	87

Cost estimate

| Capital costs | 92 |
| Production costs | 96 |

7 Plug flow interfacial polycarbonate process

| Process description | 99 |
| Sections 100—Polymerization | 99 |

Process discussion

Quality	105
Process hazards	105
Sections 100—Polymerization	105
Tables

Table 2.1 Top 10 Polycarbonate producers by shareholders 13
Table 2.2 Capital estimate for polycarbonate production process 18
Table 2.3 Detailed capital estimate for melt polycarbonate production processes 19
Table 2.4 Polycarbonate production costs 20
Table 3.1 Recent new Chinese polycarbonate plants 26
Table 4.1 Typical BPA polycarbonate properties 31
Table 5.1 List of plants using Asahi Kasei polycarbonate and DPC technology 44
Table 5.2 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process—Design basis 45
Table 5.3 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process—Major stream flows 47
Table 5.4 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process—Major equipment 54
Table 5.5 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process—Utilities summary 59
Table 5.6 Recent polycarbonate plants 62
Table 5.7 Methanol feedstock specification 63
Table 5.8 CO₂ feedstock specification 63
Table 5.9 Summary of major waste streams 67
Table 5.10 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process—Total capital investment 71
Table 5.11 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process—Capital investment by section 72
Table 5.12 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process—Production cost 75
Table 5.13 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process—Design basis 78
Table 5.14 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process—Major stream flows 79
Table 5.15 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process—Major equipment 82
Table 5.16 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process—Utilities summary 86
Table 5.17 Recent polycarbonate plants 88
Table 5.18 Dimethyl carbonate feedstock specification 88
Table 5.19 Phenol feedstock specification 88
Table 5.20 BPA feedstock specification 89
Table 5.21 Summary of major waste streams 92
Table 5.22 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process—Total capital investment 95
Table 5.23 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process—Capital investment by section 96
Table 5.24 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC and EPC’s variPLANT® PC (melt) process—Production costs 97
Table 7.1 Plug flow interfacial polycarbonate process—Section 100 Design Bases 100
Table 7.2 Plug flow interfacial polycarbonate process—Section 200 Design Bases 103
Table 7.3 Plug flow interfacial polycarbonate process—Section 300 Design Bases 104
Table 7.4 Plus flow interfacial polycarbonate process—Stream flows 110
Table 7.5 Plug flow interfacial polycarbonate process—Utilities summary 113
Table 7.6 Plug flow interfacial polycarbonate process—Major equipment 114
Table 7.7 Plug flow interfacial polycarbonate process—Total capital investment 117
Table 7.8 Plug flow interfacial polycarbonate process—Capital by section 118
Figures

Figure 1.1 BPA-Polycarbonate
Figure 1.2 2019 World consumption of polycarbonate resin by applications
Figure 2.1 Polycarbonate capacity by region
Figure 2.2 World: Polycarbonate supply and demand
Figure 2.3 Polycarbonate production by process
Figure 2.4 Simplified block diagram of Asahi Kasei integrated diphenyl carbonate and non-phosgene melt process
Figure 2.5 Simplified block diagram of an integrated process consisting of Versalis/Lummus’ DPC and EPC’s variPLANT® PC (melt) process
Figure 2.6 Simplified block diagram of polycarbonate production by a plug flow interfacial process
Figure 2.7 North America polycarbonate general purpose market price
Figure 3.1 World: Polycarbonate production by process
Figure 3.2 Polycarbonate capacity by region
Figure 3.3 2019 World polycarbonate producers by company
Figure 3.4 World: Polycarbonate supply and demand
Figure 3.5 Regional polycarbonate general purpose market price
Figure 4.1. Structure of BPA-polycarbonate
Figure 4.2 Different routes to produce DPC
Figure 4.3 Different routes to produce DMC

Appendix D Figures

Figure 5.1 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process (Sheet 1 of 6)
Figure 5.1 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process (Sheet 2 of 6)
Figure 5.1 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process (Sheet 3 of 6)
Figure 5.1 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process (Sheet 4 of 6)
Figure 5.1 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process (Sheet 5 of 6)
Figure 5.1 Polycarbonate production by an integrated process consisting of Asahi Kasei’s DPC and melt PC process (Sheet 6 of 6)
Figure 6.1 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC process and EPC’s variPLANT melt PC process (Sheet 1 of 3)
Figure 6.1 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC process and EPC’s variPLANT melt PC process (Sheet 2 of 3)
Figure 6.1 Polycarbonate production by an integrated process consisting of Versalis/Lummus’s DPC process and EPC’s variPLANT melt PC process (Sheet 3 of 3)
Figure 7.1 Plug flow interfacial polycarbonate process Process Flow Diagram (Sheet 1 of 3)
Figure 7.1 Plug flow interfacial polycarbonate process Process Flow Diagram (Sheet 2 of 3)
Figure 7.1 Plug flow interfacial polycarbonate process Process Flow Diagram (Sheet 3 of 3)