Ethylene to Alkylate Process by Next Wave Energy

PEP Review 2020-01

May 2020

Girish Ballal
Director of Fuel and Chemical Processes

Process Economics Program
PEP Review 2020-01

Ethylene to Alkylate Process by Next Wave Energy

Girish Ballal, Director of Fuel and Chemical Processes

Abstract

Alkylate has emerged as an ideal gasoline blending component in recent years due to the combination of high-octane value, absence of olefins or aromatics, low sulfur content, and low RVP. In the usual refinery context, alkylation refers to the reaction of light olefins from the FCC unit with isobutane to produce isooctane isomers. However, the advent of shale oil on the USGC region has provided another attractive option for alkylate production. The abundance of NGLs, especially ethane, associated with shale oil has resulted in abundant and inexpensive supply of ethylene. Ethylene can be catalytically dimerized to produce butylene, which may be used as a high-purity alkylation feedstock. This route provides an option to produce gasoline (alkylate) from NGL via ethylene, without the usual refinery operations. With this context in mind, Next Wave Energy Inc has recently announced the proposed construction of an alkylate production plant, starting with the ethylene feedstock. The project dubbed as “Project Traveler” involves the construction of an alkylate production plant at a Pasadena, TX location, adjacent to the Houston Ship Chanel, on the US Gulf Coast and is stated to start production by mid-2022. The project was conceived to benefit from two emerging trends; growing demand for higher octane fuel and abundant supplies of natural gas liquids and their derivatives on the US Gulf Coast.

In this review, we present technoeconomic analysis of the integrated ethylene-to-alkylate process by Next Wave Energy, Inc. The processing capacity is 1,043,000 MT/year (~2,300 million lb/year) of alkylate production. This corresponds to approximately 28,000 bbl/day of alkylate.

The production economics assessment in this report is based on a US Gulf Coast location. However, an iPEP Navigator module (an excel-based computer costing model developed by IHS Markit) is attached with this report to allow a quick calculation of the process economics for five other major regions also—Germany, Japan, China, Canada, and Saudi Arabia. For every process, the module also allows production economics to be reported in English or metric units in each region.

The technological and economic assessment of the processes is PEP’s independent interpretation of the companies’ commercial processes based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. We do believe that they are sufficiently representative of the processes and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.
Contents

1 Introduction ... 5
2 Executive summary 7
3 Industry review ... 8
 Gasoline blending 8
 Gasoline blending components 9
 Regulatory issues 9
 Supply and demand 10
 Product prices 13
4 Technology review 17
 Chemistry ... 17
 Production process 18
5 Process description 20
 Section 100: Ethylene dimerization 20
 Section 200: Alkylation reaction 21
 Section 300: Product separation 21
6 Process discussion 28
 Feedstock .. 28
 By-products .. 28
 Reaction and product recovery 28
 Catalyst ... 29
 Process waste effluents 30
 Materials of construction 30
7 Cost estimates ... 34
 Fixed-capital costs 34
 Production costs 35
 Environmental footprint 46

Tables

Table 3.1 Properties of gasoline blend stocks 9
Table 5.1 Design basis and assumptions 23
Table 5.2 Stream summary 24
Table 6.1 NextWave Alkylate—Major equipment 31
Table 6.2 NextWave Alkylate—Utilities summary 33
Table 7.1 NextWave Alkylate—Total capital investment 36
Table 7.2 NextWave Alkylate—Capital investment by section 37
Table 7.3 NextWave Alkylate—Production costs 38
Table 7.4 NextWave Alkylate—Production Costs (Metric Units) 40
Table 7.5 Environmental performance factors 47
Figures

Figure 3.1 Composition of average gasoline product 8
Figure 3.2 World: 2018 refinery product distribution 10
Figure 3.3 World gasoline demand 11
Figure 3.4 World: 2018 alkylate production capacity by manufacturing processes 12
Figure 3.5 World: 2018 alkylate capacity by geographical regions 12
Figure 3.6 Global alkylation capacity 13
Figure 3.7 USGC gasoline prices (FOB) 14
Figure 3.8 USGC long term ethylene prices (FOB) 15
Figure 3.9 Isobutane prices by location 15
Figure 3.10 Propane prices by location 16
Figure 7.1 Effect of plant capacity on capital costs 41
Figure 7.2 Effect of plant capacity on production costs 41
Figure 7.3 Capital costs at various geographical regions 42
Figure 7.4 Net production costs at various geographical regions 43
Figure 7.5 Net production cost as function of feedstock prices 44
Figure 7.6 Historical trend for cash costs at various locations 45
Figure 7.7 Historical trend for cash costs at various locations 46

Appendix B figures

Figure 1 Ethylene to alkylate process by Next Wave Energy (ethylene dimerization) 51
Figure 2 Ethylene to alkylate process by Next Wave Energy (butylene alkylation) 52