Abstract

All commercial production of cumene proceeds via alkylation of benzene with propylene at elevated temperature and pressure in the presence of an acid catalyst. While cumene manufacture was dominated by processes using solid phosphoric acid (SPA) catalyst systems for decades, the industry landscape changed dramatically beginning in the mid-1990s with advances in zeolite catalyst technology. By now, most merchant cumene producers have converted to zeolite catalyst, and almost all new investments are in zeolite technology.

Conversion of SPA-based process units to zeolite catalyst results in a dramatic increases in capacity, lower energy, maintenance and raw material costs, and improved product quality. Zeolite catalysts can be regenerated, have longer life, and eliminate the environmental considerations involved with SPA catalysts. The newest generation of zeolite catalysts offers even greater efficiency per pass, increased conversion of propylene, improved transalkylation properties, and higher selectivity.

Research and development efforts around zeolite-based cumene production have continued to advance. This report evaluates recent developments in technologies for zeolite-based cumene production. A general review of the technical field is provided, along with detailed economic evaluation for cumene by Badger process technology.

The analysis and technoeconomic results that follow are based on a design capacity of 500,000 metric tons (1.1 billion pounds) per year of cumene. Alternative investment and production cost estimates are also provided for plant capacities, which are 250,000 metric tons per year and 750,000 metric tons per year. While the capital and production cost results herein are presented on a US Gulf Coast basis, the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows for viewing results for other major regions, along with conversion between English and metric units.
Contents

1. **Introduction**
2. **Process review**
 - Industry aspects
 - Product quality
 - Chemistry
 - Alkylation
 - Transalkylation
 - Side reactions
 - Oligomerization
 - Heavy olefin alkylation
 - n-Propylbenzene
 - Hydride transfer
 - Cracking
 - Feed impurity reactions
 - Thermodynamic effects
 - Badger
 - Process flow
 - Catalyst
 - Feedstocks
3. **Economic evaluation—Badger process**
 - Process description
 - Section 100—Reaction
 - Section 200—Product recovery
 - Process discussion
 - Feedstocks
 - Product recovery
 - Waste effluents
 - Alkylation and transalkylation
 - Materials of construction
 - Cost estimates
 - Capital costs
 - Production costs
 - Environmental footprint
Tables

Table 2.1 Typical cumene specifications 6
Table 2.2 Cumene impurities 7
Table 3.1 Cumene from refinery-grade propylene by Badger process—Design basis 18
Table 3.2 Cumene from refinery-grade propylene by Badger process—Stream flows 18
Table 3.3 Cumene from refinery-grade propylene by Badger process—Major equipment 20
Table 3.4 Cumene from refinery-grade propylene by Badger process—Utilities summary 21
Table 3.5 Cumene from refinery-grade propylene by Badger process—Summary of waste streams 23
Table 3.6 Cumene from refinery-grade propylene by Badger process—Total capital investment 25
Table 3.7 Cumene from refinery-grade propylene by Badger process—Capital investment by section 26
Table 3.8 Cumene from refinery-grade propylene by Badger process—Variable costs 28
Table 3.9 Cumene from refinery-grade propylene by Badger process—Production costs 29
Table 3.10 Environment footprints for the Badger cumene process 31

Figures

Figure 2.1 Adiabatic temperature rise as a function of inlet temperature and B/P ratio 11
Figure 2.2 Block flow diagram for Badger process 12
Figure 2.3 Schematic of MWW zeolite 13
Figure 2.4 Schematic of MCM-22 family tree 14
Figure 3.1 Cumene from refinery-grade propylene by Badger process—Capital investment 27
Figure 3.2 Cumene from refinery-grade propylene by Badger process—Net production costs 30
Figure 3.3 Cumene from refinery-grade propylene by Badger process—Product value 30

Appendix D figures

Figure 2 Cumene from refinery grade propylene by Badger process—Process flow diagram 46