

Ethane Export Terminal

PEP Review 2020-12 May 2020

PEP Review 2020-12

Ethane Export Terminal

Subodh Sarin, Associate Director

Abstract

Today, the United States is a cumulative net exporter of refined products, NGLs, natural gas, and chemicals derived from natural gas and NGLs.

The export of ethane by pipeline to Canada started in 2014 and constituted almost 100% of USA's total ethane exports till 2016. The more complex logistics of deep-water ship-borne ethane exports was worked out and culminated in the first ship-borne ethane exports to Norway in 2016.

Today, the USA ships ethane to Norway, Sweden, UK, Mexico, Brazil, China, and India. The world is interested in US ethane as a low-cost feedstock for ethylene production, and it is anticipated that shipborne exports will rise—with India, Western Europe, and China as possible large-scale clients of future US ethane surplus. This review addresses the technology and economics of a marine ethane export terminal in USA, with a processing capacity of 200,000 barrels per day* (equivalent to 5.8 MMTPA) of refrigerated ethane. (*Note: In this review, the 200,000 barrels per day refers to refrigerated liquid ethane produced. In Mont Belvieu barrels, the capacity is 310,100 bbl/day—see Section 5.2 for details)

It includes the process flow diagram, material balance, major equipment sizes, and specifications. Cost data, including battery limit and offsite costs, variable costs, CAPEX, OPEX, and overall production costs, is provided.

This review provides insight into various aspects of the technical design of such a facility. It can be used as a cost estimation tool for different plant capacities. It will be beneficial for planners, producers, and designers who are looking for independent data for ethane export terminals.

An interactive iPEP Navigator module of the process is included, which provides a snapshot of the ethane terminal process economics in six global regions, reported in English or metric unit.

The technological and economic assessment of the process is PEP's independent interpretation of a commercial process based on information presented in open literature (such as patents or technical articles) or in-house generated data (e.g. HYSYS simulation, equipment cost estimation). While this assessment may not reflect the actual plant data fully, we do believe that it is sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of a process design.

Contents

1	Introduction	5
2	Summary	6
3	Industry status	8
	Factors affecting ethane pricing	9
	Ethane exports	12
	Ethane exports—China	12
	Ethane as feedstock for ethylene production	12
	Ethane shipping	12
	Larger vessels are planned	13
	Ethane as ship fuel	13
	De-risking large ethane carrier project economics	13
4	Technology review	14
	4.1 Pipeline ethane—design considerations	14
	Water content	14
	Methane content in liquefied ethane	15
	4.2 Liquefaction process—design considerations	15
	Composition of top product (fuel gas)	15
	Choice of coolant for refrigeration	16
	Choice of liquefaction process	16
	Discussion, analysis and selection	18
	Use of mechanical gas turbine drive	19
	Sea water cooling system	19
	Fuel Gas (top product) balance	19
	Start-up	20
	Materials of construction	20
	Waste streams	20
5	Process review—Ethane export terminal	21
	5.1 Basis of design	21
	5.2 Notes on basis of design	22
	Terminal capacity	22
	Inlet ethane conditions	22 22
	Inlet ethane specifications	22
	Product specifications Ethane product specification	22
	Fuel gas specification	23
	BOG Recovery package design	23
	Inlet stream dehydration	23
	5.3 Process description	23
	Section 100—Dehydration	24
	Section 200—Liquefaction	24
	Section 300—Refrigeration	25
	Section 400—Liquid Ethane Storage and BOG Package	25
	Section 500—Jetty, Loading Arms, Seawater package	25
	Offsites and general service facilities	26
	5.4 Cost estimates	32
	Fixed capital costs	32
	Production costs	33

Tables

Table 2.1 Unit costs/consumptions Table 3.1 Proposed Chinese crackers interested in US ethane Table 4.1 Pipeline ethane specifications Table 4.2 Bubble point of ethane versus methane content Table 4.3 HHV (gross, saturated) of methane	
Table 4.4 Waste streams Table 5.1 Design basis and assumptions Table 5.2 Stream flows Table 5.3 Major equipment Table 5.4 Utility summary Table 5.5 Total capital investment Table 5.6 Capital investment by section Table 5.7 Production costs Table 5.8 Carbon and water footprint	16 20 21 27 31 32 33 34 36 37
Figures	
Figure 3.1 Ethane export value chain Figure 3.2 US waterborne ethane exports, 2019 Figure 4.1 Generic configuration for liquefaction of ethane using refrigeration only Figure 4.2 Generic configuration for liquefaction of ethane using a series of flashes Figure 4.3 Sample configuration for liquefaction of ethane using a series of flashes Figure 4.4 Sample configuration for liquefaction of ethane using a demethanizer with recycle Figure 4.5 Sample configuration for liquefaction of ethane using a demethanizer with MR refrigeration	9 10 17 17 17 18
Appendix D Figures	
Figure 5.1 Ethane Export Terminal Process Flow Diagram (Section 100—Dehydration) Figure 5.2 Ethane Export Terminal Process Flow Diagram (Section 200—Liquefaction) Figure 5.3 Ethane Export Terminal Process Flow Diagram (Section 300—Propane refrigeration) Figure 5.4 Ethane Export Terminal Process Flow Diagram (Section 400—Liquid ethane storage	49 50 51
and BOG package) Figure 5.5 Ethane Export Terminal Process Flow Diagram (Section 500—Jetty, Loading Arms, Seawater package)	52 53

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The including of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external websites. Copyright © 2019, IHS Markit.* IHS Markit