IHS Markit | PEP Review 2020-12 Ethane Export Terminal

Subodh Sarin, Associate Director

Abstract

Today, the United States is a cumulative net exporter of refined products, NGLs, natural gas, and chemicals derived from natural gas and NGLs.

The export of ethane by pipeline to Canada started in 2014 and constituted almost 100% of USA’s total ethane exports till 2016. The more complex logistics of deep-water ship-borne ethane exports was worked out and culminated in the first ship-borne ethane exports to Norway in 2016.

Today, the USA ships ethane to Norway, Sweden, UK, Mexico, Brazil, China, and India. The world is interested in US ethane as a low-cost feedstock for ethylene production, and it is anticipated that ship-borne exports will rise—with India, Western Europe, and China as possible large-scale clients of future US ethane surplus. This review addresses the technology and economics of a marine ethane export terminal in USA, with a processing capacity of 200,000 barrels per day* (equivalent to 5.8 MMTPA) of refrigerated ethane. (*Note: In this review, the 200,000 barrels per day refers to refrigerated liquid ethane produced. In Mont Belvieu barrels, the capacity is 310,100 bbl/day—see Section 5.2 for details)

It includes the process flow diagram, material balance, major equipment sizes, and specifications. Cost data, including battery limit and offsite costs, variable costs, CAPEX, OPEX, and overall production costs, is provided.

This review provides insight into various aspects of the technical design of such a facility. It can be used as a cost estimation tool for different plant capacities. It will be beneficial for planners, producers, and designers who are looking for independent data for ethane export terminals.

An interactive iPEP Navigator module of the process is included, which provides a snapshot of the ethane terminal process economics in six global regions, reported in English or metric unit.

The technological and economic assessment of the process is PEP’s independent interpretation of a commercial process based on information presented in open literature (such as patents or technical articles) or in-house generated data (e.g. HYSYS simulation, equipment cost estimation). While this assessment may not reflect the actual plant data fully, we do believe that it is sufficiently representative of the process and process economics within the range of accuracy necessary for economic evaluations of a process design.
Contents

1 Introduction 5
2 Summary 6
3 Industry status 8
 Factors affecting ethane pricing 9
 Ethane exports 12
 Ethane exports—China 12
 Ethane as feedstock for ethylene production 12
 Ethane shipping 12
 Larger vessels are planned 13
 Ethane as ship fuel 13
 De-risking large ethane carrier project economics 13
4 Technology review 14
 4.1 Pipeline ethane—design considerations 14
 Water content 14
 Methane content in liquefied ethane 15
 4.2 Liquefaction process—design considerations 15
 Composition of top product (fuel gas) 15
 Choice of coolant for refrigeration 16
 Choice of liquefaction process 16
 Discussion, analysis and selection 18
 Use of mechanical gas turbine drive 19
 Sea water cooling system 19
 Fuel Gas (top product) balance 19
 Start-up 20
 Materials of construction 20
 Waste streams 20
5 Process review—Ethane export terminal 21
 5.1 Basis of design 21
 5.2 Notes on basis of design 22
 Terminal capacity 22
 Inlet ethane conditions 22
 Inlet ethane specifications 22
 Product specifications 22
 Ethane product specification 22
 Fuel gas specification 23
 BOG Recovery package design 23
 Inlet stream dehydration 23
 5.3 Process description 23
 Section 100—Dehydration 24
 Section 200—Liquefaction 24
 Section 300—Refrigeration 25
 Section 400—Liquid Ethane Storage and BOG Package 25
 Section 500—Jetty, Loading Arms, Seawater package 25
 Offsites and general service facilities 26
 5.4 Cost estimates 32
 Fixed capital costs 32
 Production costs 33
Tables

Table 2.1 Unit costs/consumptions ... 7
Table 3.1 Proposed Chinese crackers interested in US ethane 12
Table 4.1 Pipeline ethane specifications 14
Table 4.2 Bubble point of ethane versus methane content 15
Table 4.3 HHV (gross, saturated) of methane 16
Table 4.4 Waste streams .. 20
Table 5.1 Design basis and assumptions 21
Table 5.2 Stream flows ... 27
Table 5.3 Major equipment ... 31
Table 5.4 Utility summary ... 32
Table 5.5 Total capital investment ... 33
Table 5.6 Capital investment by section 34
Table 5.7 Production costs .. 36
Table 5.8 Carbon and water footprint 37

Figures

Figure 3.1 Ethane export value chain .. 9
Figure 3.2 US waterborne ethane exports, 2019 10
Figure 4.1 Generic configuration for liquefaction of ethane using refrigeration only .. 17
Figure 4.2 Generic configuration for liquefaction of ethane using a series of flashes ... 17
Figure 4.3 Sample configuration for liquefaction of ethane using a series of flashes ... 17
Figure 4.4 Sample configuration for liquefaction of ethane using a demethanizer with recycle .. 18
Figure 4.5 Sample configuration for liquefaction of ethane using a demethanizer with MR refrigeration .. 18

Appendix D Figures

Figure 5.1 Ethane Export Terminal Process Flow Diagram (Section 100—Dehydration) ... 49
Figure 5.2 Ethane Export Terminal Process Flow Diagram (Section 200—Liquefaction) ... 50
Figure 5.3 Ethane Export Terminal Process Flow Diagram (Section 300—Propane refrigeration) .. 51
Figure 5.4 Ethane Export Terminal Process Flow Diagram (Section 400—Liquid ethane storage and BOG package) ... 52
Figure 5.5 Ethane Export Terminal Process Flow Diagram (Section 500—Jetty, Loading Arms, Seawater package) ... 53