

Natural Gas Sweetening by Membrane Separation

PEP Report 216B July 2020

Ron Smith Director

Rajiv Narang Executive Director

Process Economics Program

Contacts

Rajiv Narang Executive Director rajiv.narang@ihsmarkit.com

RJ Chang

Vice President, Process Economics Program rj.chang@ihsmarkit.com

PEP Report 216B

Natural Gas Sweetening by Membrane Separation

Ron Smith, Director Rajiv Narang, Executive Director

Abstract

The traditional approach, for sour gas processing, is to utilize solvent systems for natural gas cleanup and Claus technology for conversion of H_2S to elemental sulfur. However, this technology is difficult to operate and could be uneconomical when used on lower amount of highly sour acid gases in remote locations. Moreover, the production of sulfur is a nuisance as currently there are insufficient market resources to absorb large volumes of elemental sulfur, which is brought into the market from natural gas treating applications. Hence with the existing sour gas production areas producing large amounts of sulfur, a new technology that can envisage a more sustainable future is needed.

In the past, membranes could only be used for coremoval of H_2S and CO_2 when the acid gas sulfur level is low. But some wellhead sources of natural gas may contain acid gas sulfur level as high as 80%. Upon combination with water, these gas streams are highly corrosive and can rapidly destroy pipelines and equipments unless they are partially removed. Hence, exotic and expensive materials are required for the construction of pipeline and downstream facilities. Before entering the distribution pipelines, natural gas needs to be purified from acid gasses, CO_2 and H_2S , to prevent pipeline corrosion. Apart from being corrosive, H_2S is also highly toxic, hence only small traces of H_2S are allowed to be present (<4ppm). For CO_2 , the pipeline specification is often set at 2% or 3%, with an additional reduction required (<50 ppm) if the gas is turned into liquefied natural gas (LNG).

Some companies have developed polymeric membranes, which can be used for bulk H₂S removal from natural gas carrying very high concentration of H₂S, at high operating pressures. This approach allows more sustainable development of new sour gas fields or retrofitting of existing applications. The membrane system can be used to either treat the gas to meet pipeline specifications or make a bulk cut of acid gases, and then final pipeline specifications can be met using the traditional amine processes or other traditional follow-on operations. Ideally, the permeate gas from the membrane system is reinjected rather than being converted to elemental sulfur. The advantages of membrane systems over conventional processes are site specific, but may include lower capital and energy costs, reduced space requirements, faster delivery time, and lower installation costs owing to smaller, lighter modular design; lower operating costs and limited manpower requirements owing to simplified operation and maintenance; increased adaptability to changing feed flow and composition; elimination of dehydration equipment; potential elimination of costly sulfur recovery units; faster, easier start-up and shutdown. In general, significant reductions in capital and operating costs can be achieved over traditional acid gas removal processes and this report compares the process designs and economics using membrane technology for a wide range of acid gas removal operations

This report addresses treatment of natural gas in a remote location using membrane technology and utilizing PEBAX® material as membrane, and a process scheme which limits methane loss. Analysis is carried out for two flow rates 2 MMscf/d and 35 MMscf, containing varying amounts of CO₂ (2% to 7%) and H₂S (1% to 6%), using PEBAX® 4011 material for membranes and treating gas to pipeline specification. A material balance table, a sized equipment list, and process flow diagrams are also

2

included in the report. Simulation was carried out using PROMAX® version 4. An Excel based tool, iPEP Navigator®, is also provided for easy economic analysis in different regions of the world.

The technological and economical assessment of the process is PEP's independent interpretation of a potential commercial process based on the information presented in open literature, such as patents or technical articles and it may not reflect in whole or in part the actual plant configuration. IHS Markit believes that they are sufficiently representative of the process and process economics within the range of accuracy necessary for economical evaluation of the conceptual process design.

Contents

1	Introduction	6
	Background	6
	Membrane systems for acid gas removal	6
2	Summary	10
3	Industry status	14
	Natural gas reserves	14
	Global consumption	14
	Imports	16
	Historical pricing	17
	Treatment of natural gas	18
4	Technology review	22
	Background	22
	Membrane morphology	26
	Gas separation membrane properties	27
	Commercial membranes	28
	New membranes for natural gas treating	29
	DOE Study [2020-04-13]	29
	Engineering membrane modules	30
	Membrane modular structure	30
	Stage configuration	32
	Sealing of defects in membranes	33
	Natural gas treatment requirements	33
	Other potential solutions	38
	SmartSulf®	40
	Iron sponge process	41
	SulfaTreat™ (Iron Oxide) Scavenger process	41
	Carbon dioxide removal	43
	Dehydration	45
	Nitrogen removal	46
	Helium removal	46
	Sulfur removal	46
	Scavengers	47
	Solid scavengers	47
	Liquid scavengers	47
	Liquid redox process—LO-CAT®	48
5	Natural gas treatment high flow	53
	Introduction	53
	Process description	54
	Process discussion	62
	Material of construction	63
	Carbon and water footprint	63
	Waste stream summary	63
	Cost estimate	63
	Capital cost	64
	Production cost	64
	Conclusion	73
6	Natural gas treatment low flow	75
	Introduction	75
	Process description	76

Process discussion	79
Material of construction	80
Carbon and water footprint	80
Waste stream summary	81
Cost estimate	81
Capital cost	81
Production cost	82
Conclusion	85

Tables

Table 2.1 Typical US national pipeline specification for natural gas	10
Table 2.2 Summary of all cases	12
Table 4.1 Major applications and manufacturers of membrane systems	25
Table 4.2 Commercial membranes for natural gas treating	28
Table 4.3 Hollow fiber module development	32
Table 4.4 Short list of reservoirs with high H ₂ S content	34
Table 4.5 US national pipeline specification for natural gas	35
Table 4.6 Technologies for contaminant removal in natural gas	36
Table 4.7 Liquid H ₂ S scavengers	48
Table 4.8 Sulfur removal technology selection table	51
Table 5.1 Design basis—35 MMscf/d	54
Table 5.2 Stream balance lbs/h (high sulfur low CO2–Case 1)	55
Table 5.3 Stream balance lbs/h (high sulfur low CO2–Case 2)	55
Table 5.4 Stream balance lbs/h (medium sulfur high CO2–Case 3)	56
Table 5.5 Stream balance lbs/h (high sulfur high CO2-Case 4)	56
Table 5.6 Equipment list Case 1	57
Table 5.7 Equipment list Case 2	58
Table 5.8 Equipment list Case 3	59
Table 5.9 Equipment list Case 4	60
Table 5.10 Utility summary Case 1	61
Table 5.11 Utility summary Case 2	61
Table 5.12 Utility summary Case 3	61
Table 5.13 Utility summary Case 4	62
Table 5.14 Optimizing Secondary Membrane area for Case 4	63
Table 5.15 Carbon footprint all cases	63
Table 5.16 Waste stream summary all cases	63
Table 5.17 Capital cost (Case 1)	65
Table 5.18 Capital cost (Case 2)	66
Table 5.19 Capital cost (Case 3)	67
Table 5.20 Capital cost (Case 4)	68
Table 5.21 Production cost (Case 1)	68
Table 5.22 Production cost (Case 2)	69
Table 5.23 Production cost (Case 3)	69
Table 5.24 Production cost (Case 4)	69
Table 5.25 Production cost continued (Case 1)	70
Table 5.26 Production cost continued (Case 2)	71
Table 5.27 Production cost continued (Case 3)	72
Table 5.28 Production cost continued (Case 4)	73
Table 5.29 Summary of all cases	74
Table 6.1 Design basis—2 MMscf/d	76
Table 6.2 Stream balance lbs/h (low sulfur low CO2–Case 5)	77
Table 6.3 Stream balance lbs/h (low sulfur low CO ₂ _Case 6)	77

78
79
79
79
80
81
82
83
83
84
84
85
86

Figures

Figure 2.1 Two stage configuration for membrane separation	11
Figure 3.1 World production of natural gas	16
Figure 3.2 World consumption of natural gas	17
Figure 3.3 Natural gas prices, \$/MMBtu	17
Figure 3.4 Application envelopes for absorption and membrane processes to treat sour gas	19
Figure 4.1 Typical membrane separation	23
Figure 4.2 Sorption model for non-porous polymer membrane	24
Figure 4.3 Membrane Separation for gases	25
Figure 4.4 Membrane morphologies	26
Figure 4.5 Permeability vs selectivity	28
Figure 4.6 Cellule acetate polymer structure	29
Figure 4.7 PEBAX® polymer structure	29
Figure 4.8 Hollow fiber membrane development	31
Figure 4.9 Spiral wound module construction	32
Figure 4.10 Two stage configuration for membrane separation	33
Figure 4.11 Schematic for typical processing of natural gas	37
Figure 4.12 Process flow schematic for the anime-Claus procesd for large land-based gas fields	39
Figure 4.13 SmartSulf® process scheme	41
Figure 4.14 Schematic diagram of the membrane/SulfaTreat® hybrid process	42
Figure 4.15 Choice of carbon dioxide removal technology	44
Figure 4.16 Two stage membrane system	45
Figure 4.17 FPSO liquid redox process block flow diagram	49
Figure 4.18 FPSO liquid redox sulfur removal system process flow schematic	50

Appendix C Figures


Figure C1 Process flow scheme Cases 1 to 4	96
Figure C2 Process flow scheme Case 5	97
Figure C3 Process flow scheme Case 6	98

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Histither IHS
Markit or the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or
otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

