

Integrated Cumene-Phenol/Acetone/Bisphen ol A- Part II: Phenol

PEP Review 2020-10 July 2020

Process Economics Program

PEP Review 2020-10

Integrated Cumene-Phenol/Acetone-Bisphenol A-Part II: Phenol/Acetone

Dipti Dave, Associate Director

Abstract

The dominant commercial production of phenol proceeds via cumene hydroperoxide (CHP) route. Over 95% of the world's phenol production is based on this technology and the rest is produced via toluene oxidation or recovered from coal tar.

The cumene oxidation (Hock process of 1944) consists of two fundamental chemical reactions: Firstly, cumene is oxidized with oxygen to become cumene hydroperoxide (CHP). Next, CHP is then cleaved to phenol and acetone by using a strong mineral acid as catalyst. In these early years, the cumene oxidation technology was based solely on wet oxidation since the 1960's. Then, dry oxidation was introduced. New plants today would use dry oxidation technologies because they are easier to control, operate, and require fewer numbers of equipments, as well as needing much lower consumption of chemicals and are more energy efficient.

Previously, Process Economics Program (PEP) report RW 2020-09 titled: *Integrated cumene-phenol/acetone/bisphenol A–Part I Cumene* was published April 2020, which covered the zeolite-base cumene technology by Badger process for 500,000 metric tons/yr. The economics from this report will be integrated with the cumene process, from RW 2020-09 and shown in the summary section 2 of this report. Then after this report, RW 2020-11 titled: *Integrated cumene-phenol/acetone-bisphenol A–Part III Bisphenol A* will be published. The final report of the series will represent the integrated value chain for all three technologies: *cumene-phenol/acetone-bisphenol A*. This report presents a detailed economic evaluation for phenol by KBR's (Kellogg Brown & Root, Inc.) Medium Pressure-Dry Oxidation process technology and KBR's Advanced Cleavage System.

The analysis and technoeconomic results that follow are based on a design capacity of 400,000 metric tons (2.4 million pounds) per year of phenol and approximately 246,000 metric tons (1.5 million) per year of acetone. While the capital and production cost results herein are presented on a US Gulf Coast basis, the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows for results viewing for other major regions, along with conversion between English and metric unit.

Contents

1	Introduction	5
2	Summary	7
	KBR's Medium Pressure-Dry Oxidation phenol process technology and KBR's Advanced Cleave	age
	System	7
	Cumene by Badger Process Technology	8
3	Industry status	12
	Phenol	12
	Acetone	13
	KBR Recent License Awards	15
4	Technology review	17
	History	17
	Feed quality	17
	Cumene	17
	Product quality	18
	Phenol	18
	Acetone	18
	Alpha-Methylstyrene product (optional)	19
	Chemistry	19
	Noncatalyzed radical chain oxidation	21
	Thermal decomposition of cumene hydroperoxide	21
	Oxidation of cumene	22
	Process overview	23
5	Economic evaluation–KBR phenol process	25
	Process description	25
	Section 100—Cumene oxidation and concentration	25
	Section 200—Cleavage and neutralization	26
	Section 300—Product recovery	26
	Acetone fractionation	26
	Phenol fractionation and heavies removal	27
	Section 400—Dephenolation	27
	Section 500—Alpha-methyl styrene hydrogenation	27
	Process discussion	34
	Waste effluents	34
	Vent system and emergency relief	35
	Materials of construction and storage	35
	Cost estimates	35
	Capital costs	36

Tables

Table 2.1 Phenol from KBR process via Cumene from propylene by Badger process	9
Table 3.1 Grassroots phenol plants employing Licensed KBR Phenol Technology since 2000	16
Table 4.1 Cumene purchase quality	17
Table 4.2 Phenol product quality	18
Table 4.3 Acetone product quality	18
Table 4.4 Reaction and product recovery section	24
Table 5.1 Phenol by KBR process—Design basis	28
Table 5.2 Phenol by KBR process—Stream flows	29
Table 5.3 Phenol by KBR process—Major equipment	31
Table 5.4 Phenol by KBR process—Utilities summary	34
Table 5.5 Phenol by KBR process—Summary of waste streams	35
Table 5.6 Phenol by KBR process—Total capital investment	37
Table 5.7 Phenol by KBR process—Total capital investment by section	38
Table 5.7 Phenol by KBR process—Total capital investment by section (concluded)	39
Table 5.8 Phenol by KBR process—Variable costs	41
Table 5.9 Phenol by KBR process—Production costs	42
Table 5.10 Environment footprints for the KBR phenol process	44

Figures

Figure 1.1 Phenol and Acetone key components in cumene value chain	5
Figure 2.1 BFD of KBR Phenol process technology	7
Figure 2.2 Block flow diagram for Badger process	8
Figure 2.3 Production and Variable cost breakdown	11
Figure 3.1 World: 2019 phenol demand	12
Figure 3.2 World: 2019 phenol demand by region	13
Figure 3.3 World: 2019 acetone demand	14
Figure 3.4 World: 2019 acetone demand by region	15
Figure 4.1 Cumene oxidation's side reactions	23
Figure 4.2 BFD of KBR Phenol process technology	24
Figure 5.1 Phenol by KBR process—Capital investment	40
Figure 5.2 Phenol by KBR process—Net production costs	43
Figure 5.3 Phenol by KBR process—Product value	43

Appendix D Figures

Figure 1 Section 100 Cumene Oxidation and Concentration	61
Figure 2 Section 200 Cleavage and Neutralization	62
Figure 3 Section 300 Product Recovery	63
Figure 4 Section 400 Dephnolation and Section 500 AMS Hydrogenation	64

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of HS Markit Ld. or any of its affiliates ("HS Markit") is strictly prohibited. HS Markit Newns all HS Markit prior written permission of HS Markit Ld. or any of its affiliates ("HS Markit") is strictly prohibited. HS Markit Newns all HS Markit nor the author(s) has any obligation to update this presentation in the event that any contents, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of HS Markit. Neither HS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collective), "information") changes or subsequently becomes inaccurate. HS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit hould not be understood to be an endorsement of that website to the site's owners (or the products/services). IHS Markit BMarkit should not output of external websites. Copyright © 2019, IHS Markit™. All rights reserved and all intellectual property rights are retained by IHS Markit.

