

Net-zero carbon ethylene production via recovery of CO₂ from cracking furnace flue

gas

PEP Review 2022-03

July 2022

Subodh Sarin Director

Rajeev Singh Principal Research Analyst

Process Economics Program

Contacts

Subodh Sarin

Director, Process Economics Program subodh.sarin@ihsmarkit.com

Rajeev Singh

Principal Research Analyst, Process Economics Program rajeev.singh@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Review 2022-03

Net-zero carbon ethylene production via recovery of CO₂ from cracking furnace flue gas

Subodh Sarin, Director Rajeev Singh, Principal Research Analyst

Abstract

Steam cracking of hydrocarbons is one of the largest carbon dioxide (CO_2) emitting processes in the chemicals industry. Conventional cracking generates approximately 0.85–1.8 metric tons (mt) of CO_2 for every metric ton of ethylene produced. Globally, that amounts to more than 260 million metric tons (MMt) of CO_2 emissions per year.

At the United Nations Climate Change Conference (COP26, Glasgow 2021), all the participating countries agreed to revisit and strengthen their emission targets. It appears inevitable that there will be an increased focus on the development of net-zero carbon emission ethylene production processes; either by using redesigned net-zero-emission technologies or by capturing and sequestering the CO_2 produced in conventional processes.

This review focuses on capture of CO₂ from flue gases in an ethane cracker facility.

The facility is a conventional steam cracker designed to produce 1.5 million metric tons per annum (MMtpa) of polymer-grade (PG) ethylene. A carbon-capture section is added, which recovers 90% of the CO_2 in the flue gas and compresses it for delivery to pipeline. Atmospheric emission of CO_2 is reduced by approximately 1.15 MMtpa (over the conventional process).

This review is the first in a series that IHS Markit plans to publish on ethylene technologies with the potential to reduce carbon emissions by 90% or more. This set of reviews will be a valuable resource for planners, producers, and designers who are looking for an authentic comparison of capital and production costs for different strategies of deep carbon emission reduction for ethylene production.

Contents

1	Introduction	6
2	Summary	7
	Process economics	8
	Energy and carbon intensity	8
	Impact of cost of carbon on the process economics	9
	Levelized cost of carbon abatement	11
	Alternate Case—Hydrogen to furnace as fuel	11
3	Industry status	13
	Characteristics of the market	15
	Carbon capture market overview	16
	Levelized cost of carbon abatement	17
4	Technology review	18
	Scope definition of carbon emissions	18
	Net-zero carbon emission ethylene production in steam cracker	18
	Postcombustion carbon capture from flue gas	24
5	Process review	26
	Basis of design	26
	Process description	28
	Section 100—Feedstock pretreatment	29
	Section 200—Steam cracking and quench	29
	Section 300—Cracked gas compression and acid gas removal	30
	Section 400—Cryogenic refrigeration and cold box	30
	Section 500—Hydrogen purification	30
	Section 600—Cryogenic distillation	31
	Section 700—Carbon capture	31
	Section 800—Carbon dioxide compression	32
	Section 900—Steam distribution	32
	Process discussion	43
	Cracking furnace	43
	Steam system design	45
	Recovery section design	46
	Specific energy consumption	47
	Alternate Case—Hydrogen recycles to furnace as fuel	47
	Carbon and water footprint	48
	Cost estimates	49
	Fixed capital costs	49
	Production costs	51
_	Levelized cost of carbon abatement pendix A—Design and cost basis	54
	55	
	pendix B—Cited references	59
Ар	pendix C—Process flow diagrams	61

Tables

Table 2.1 Comparison summary Table 2.2 Specific energy consumption	8 9
Table 2.3 Carbon emissions (Scope 1 and 2) with the use of net-zero-carbon renewable electricity	9
Table 3.1 World capacity/consumption for ethylene	14
Table 5.1 Design bases and assumptions	27
Table 5.1a Steam cracker furnace yields (wt%)	28
Table 5.2 Stream balance (lb/hr)	33
Table 5.3 Major equipment list	40
Table 5.4 Furnace fuel	45
Table 5.5 Specific energy consumption	47
Table 5.6 Furnace fuel gas composition with hydrogen stream	47
Table 5.7 Alternate Case comparison	48
Table 5.8 Carbon emissions and water usage	49
Table 5.9 Total capital investment	50
Table 5.10 Ethane cracking with carbon capture—Sectional capital investment	51
Table 5.11 Ethane cracking with carbon capture—Variable costs	52
Table 5.12 Ethane cracking with carbon capture—Production costs	53

Figures

7
10
11
16
17
20
21
22
23
24
25
25
28
44
46

Appendix C Figures

Figure C Ethane cracking with carbon capture (Sheet 1 of 8)	62
Figure C Ethane cracking with carbon capture (Sheet 2 of 8)	63
Figure C Ethane cracking with carbon capture (Sheet 3 of 8)	64
Figure C Ethane cracking with carbon capture (Sheet 4 of 8)	65
Figure C Ethane cracking with carbon capture (Sheet 5 of 8)	66
Figure C Ethane cracking with carbon capture (Sheet 6 of 8)	67
Figure C Ethane cracking with carbon capture (Sheet 7 of 8)	68
Figure C Ethane cracking with carbon capture (Sheet 8 of 8)	69

Customer Care CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +81 3 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer
The information contained in this report is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by
any means, without the prior written permission of IHS Markit or any of its affiliates ('IHS Markit') is strictly prohibited. IHS Markit owns all IHS Markit logos
and trade names contained in this report that are subject to license. Opinions, statement, estimates, and projections in this report (including other media) are
solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has
any obligation to update this report in the event that any content, opinion, statement, estimate, or projection (collectively, 'information') changes or
subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in
this report, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no
liability whatsoever to any recipient as a result of or in connection with any information provided, the inclusion of a link to an external website by IHS Markit do to be understood to be an
endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external
websites. Copyright © 2022, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

