Maleic Anhydride by Huntsman Technology

PEP Review 2020-08
August 2020
Abstract

This review examines the technology and economics of producing maleic anhydride (MAN) using n-butane as the raw material. The process that this review evaluates is patented and is commercially licensed by Huntsman Petrochemicals LLC. The evaluation process entails a series of steps involving a brief process review followed by a more detailed parametric information about the technology, such as process operation key conditions, process description, material and energy balance, equipment sizes, utilities consumption, and a process flowsheet. Process economics are presented in the latter part of the review.

The technology is basically a two-step process. In the first step, n-butane is oxidized in tubular fixed-bed reactors to produce maleic anhydride (MAN) and other gases, such as carbon dioxide and carbon monoxide as well as a certain amount of by-products, such as fumaric, acrylic, and acetic acids. The second step is to isolate the maleic anhydride (MAN) formed, using dibutyl phthalate ester as the main solvent. This ester dissolves the acids as well as maleic anhydride (MAN), and the remaining gases are incinerated in a flare/vent system. The maleic anhydride (MAN) is then separated from the rich solvent and the lean solvent is recycled.

In the end, the economics of maleic anhydride (MAN) production are presented for an integrated plant converting n-butane to maleic anhydride (MAN). Our estimates indicate that the net production cost of maleic anhydride (MAN) from this route is 34.80 ¢/lb. Seeing that, the market price of MAN is approximately 44.5¢/lb, hence a new green field plant using this technology appears to be a feasible proposition.
Contents

1. **Introduction** 5
2. **Summary** 6
3. **Market overview product usage** 7
 - Unsaturated polyester resin (UPR) 7
 - Production of 1,4-butanediol 7
 - Lube oil additives 7
 - Co-polymers 7
 - Agriculture chemicals 8
 - Production of fumaric acid and malic acid 8
 - Other applications 8
 - Global trends for Maleic Anhydride production/consumption 8
4. **Technical review** 11
 - Manufacturing processes 11
 - Oxidation of benzene 12
 - Oxidation of n-butane 12
 - Oxidation of n-butenes 13
 - Co-product of phthalic anhydride manufacture 13
 - Review of Vanadium Phosphorous Oxide (VPO) catalyst 14
 - Oxidation reaction of n-Butane 15
5. **Process economics and design basis** 16
 - Product properties 16
 - Process design basis 16
 - Process description 17
 - Oxidation of n-Butane 17
 - Isolation of MAN from reaction gases 19
 - Heat material balance tables 20
 - Major equipment list 23
 - Utility summary 24
 - Cost estimation 24
 - Fixed capital cost 25
 - Waste treatment 25
 - Production cost 26
 - Economic discussion 28
 - Design conditions 31
 - Cost basis 31
 - Capital investment 31
 - Project construction timing 33
 - Available 33
 - Production costs 34
 - Effect of operating level on production cost 34
Tables

Table 3.1 Maleic anhydride from n-Butane by Scientific Design Co. process 10
Table 5.1 Typical physical properties of MAN 16
Table 5.2 Design basis 17
Table 5.3a Material balance (design case) 20
Table 5.3b Material balance (design case) 21
Table 5.3c Material balance (design case) 22
Table 5.4 Major equipment list 23
Table 5.5 Utility summary 24
Table 5.6 Total capital investment cost 26
Table 5.7 MAN production cost 27
Table 5.8 Carbon and water footprint 28

Figure for Appendix D

Figure 1 PFD for MAN Production from n-Butane 41