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Abstract 

This PEP report presents the technoeconomic analysis of three developing technologies that use 

atmospheric CO2  and H2O (steam and water) as raw material to produce syngas (H2 and CO mixture) 

and synthetic natural gas (methane). The analyses are presented in Chapters 5, 6, and 7 under the 

following headings: 

• Conversion of CO2 to syngas for a Fischer-Tropsch fuels plant by co-electrolysis of CO2 and steam 

(Sunfire GmbH) 

• Conversion of CO2 to methane by co-electrolysis of CO2 and steam (Sunfire GmbH) 

• Production of methane from industrial CO2 emissions and electrolytic H2 from  water (Hitachi Hozen 

Inova/ETOGAS)  

Different aspects of the technologies have been analyzed and the results of these analyses are presented 

in descriptive, tabulated or diagrammatic formats, depending on the feature of the technology 

described. Main elements of the technology analyses include selection and statement of 

assumptions/bases for process design, process design details (process description with a complete 

statement of process operating conditions, material and energy balance, process flow diagram, process 

discussion, process equipment listing with sizes, utilities consumption, capital costs, and production 

costs. All processes use electricity, which is generated from renewable energy sources (solar or wind). 

Syngas (Chapter 5) is produced as feed material for the Fischer-Tropsch process, whereas the synthesis 

natural gas (Chapters 6 and 7) is produced to be used as a fuel. A notable thing about the analyzed 

technologies is that the electricity used in the processes is produced from renewable sources of energy 

(solar energy in our case). CO2 and H2 are obtained from atmospheric air/flue gas and steam/water 

electrolysis, respectively. These CO2 utilization technologies are currently in the initial stages of 

development and have been tested on pilot or mini-plant levels; we have carried out technoeconomic 

evaluation of those technologies at higher (projected) capacities, thus, incorporating the likelihood for 

cost reduction due to economies of scale.  

Potentially, the CO2 utilization technologies offer an enormous market. For example, in 2018, 

approximately 330,000 million tons of global energy-related CO2 was emitted. Not surprisingly, the 

three largest industrial nations—China, India, and the United States, together accounted for more than 

50% of that. In comparison, the total global merchant and captive CO2 market in 2018 was estimated 

at only 230 million metric tons, which is about 0.7% of the global emissions. Hence, as far as the 

availability of raw material (CO2 and water) is concerned, there is an abundance of it (CO2 atmospheric 

concentration in 2018 was about 408 ppm). Solar and wind energy are also freely available in many 

regions of the world for a major period of time. Hence, as far as basic imperatives and scope for the 

expansion of those technologies are concerned, they are enormous. Proponents of the CO2 circular 

economy notion consider development and expansion of such technologies as the first and most 

important step towards the realization of the goal of a CO2 circular economy.   
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Besides economic utility, CO2 utilization via conversion to useful products also offers potential 

opportunities for control/reduction of CO2 emissions to the atmosphere, which may not be of 

perceptible magnitude initially, but could bring tangible results over time. While attempts to limit CO2 

emissions by reducing the burning of fuels, conducting more effective collection and sequestration of 

CO2—have been going on for quite some time now, the evolving CO2 utilization technologies (also 

referred to as CO2 recycling) can open a vast avenue to use atmospheric CO2 in the development of 

products and services. Such potential of these technologies is capturing serious attention of the 

industry, investment communities, and some governments, which are interested in mitigating climate 

changes from the effects of greenhouse gases and being supportive of a circular economy. Five key 

categories of CO2-derived products and services have been the focus of studies and technoeconomic 

analyses. These categories include fuels, chemicals, building materials from minerals, building 

materials from wastes, and CO2 used as an enhancer of yields from biological processes. New pathways 

involving chemical and biological conversion of CO2 to aforementioned products are being studied. 

We believe that the abovementioned CO2 utilization technologies, in their present condition, may be 

useful under special circumstances (e.g., in those places where fossil fuel is very expensive or not 

available at all). Also, their use is likely to remain limited to small-sized local applications—at least in 

the short- to medium-term future. The reason for this is despite all the potential benefits of those 

technologies as outlined above, there is presently an unfavorable aspect of those technologies that 

needs to be improved for their application to be picked up on a wider scale. And that aspect is their 

high capital and production costs in relation to the corresponding cost parameters for the same materials 

produced from conventional technologies. To some extent, that is quite understandable. The 

technologies are in the initial stages of development/commercialization. The plant and equipment sizes 

are very small from an industrial point of view. Hence, their costs (especially of CO2 capture plant, 

electrolyzer units, and electricity costs) are too high. The costs are likely to reduce as plants are built 

in larger sizes. And lastly, but very importantly, active regulatory support of governments and more 

liberal funding are needed. Public response and acceptance of those low-carbon products (possibly at 

higher prices) will be very helpful towards creating early markets for the CO2-derived products with 

verifiable climate benefits. 
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