

Carbon Dioxide Utilization Technologies

PEP Report 285A September 2020

Process Economics Program

PEP Report 285A

Carbon Dioxide Utilization Technologies

Syed N Naqvi, Executive Director

Abstract

This PEP report presents the technoeconomic analysis of three developing technologies that use atmospheric CO_2 and H_2O (steam and water) as raw material to produce syngas (H_2 and CO mixture) and synthetic natural gas (methane). The analyses are presented in Chapters 5, 6, and 7 under the following headings:

- Conversion of CO₂ to syngas for a Fischer-Tropsch fuels plant by co-electrolysis of CO₂ and steam (Sunfire GmbH)
- Conversion of CO₂ to methane by co-electrolysis of CO₂ and steam (Sunfire GmbH)
- Production of methane from industrial CO₂ emissions and electrolytic H₂ from water (Hitachi Hozen Inova/ETOGAS)

Different aspects of the technologies have been analyzed and the results of these analyses are presented in descriptive, tabulated or diagrammatic formats, depending on the feature of the technology described. Main elements of the technology analyses include selection and statement of assumptions/bases for process design, process design details (process description with a complete statement of process operating conditions, material and energy balance, process flow diagram, process discussion, process equipment listing with sizes, utilities consumption, capital costs, and production costs. All processes use electricity, which is generated from renewable energy sources (solar or wind).

Syngas (Chapter 5) is produced as feed material for the Fischer-Tropsch process, whereas the synthesis natural gas (Chapters 6 and 7) is produced to be used as a fuel. A notable thing about the analyzed technologies is that the electricity used in the processes is produced from renewable sources of energy (solar energy in our case). CO_2 and H_2 are obtained from atmospheric air/flue gas and steam/water electrolysis, respectively. These CO_2 utilization technologies are currently in the initial stages of development and have been tested on pilot or mini-plant levels; we have carried out technoeconomic evaluation of those technologies at higher (projected) capacities, thus, incorporating the likelihood for cost reduction due to economies of scale.

Potentially, the CO_2 utilization technologies offer an enormous market. For example, in 2018, approximately 330,000 million tons of global energy-related CO_2 was emitted. Not surprisingly, the three largest industrial nations—China, India, and the United States, together accounted for more than 50% of that. In comparison, the total global merchant and captive CO_2 market in 2018 was estimated at only 230 million metric tons, which is about 0.7% of the global emissions. Hence, as far as the availability of raw material (CO_2 and water) is concerned, there is an abundance of it (CO_2 atmospheric concentration in 2018 was about 408 ppm). Solar and wind energy are also freely available in many regions of the world for a major period of time. Hence, as far as basic imperatives and scope for the expansion of those technologies are concerned, they are enormous. Proponents of the CO_2 circular economy notion consider development and expansion of such technologies as the first and most important step towards the realization of the goal of a CO_2 circular economy.

Besides economic utility, CO_2 utilization via conversion to useful products also offers potential opportunities for control/reduction of CO_2 emissions to the atmosphere, which may not be of perceptible magnitude initially, but could bring tangible results over time. While attempts to limit CO_2 emissions by reducing the burning of fuels, conducting more effective collection and sequestration of CO_2 —have been going on for quite some time now, the evolving CO_2 utilization technologies (also referred to as CO_2 recycling) can open a vast avenue to use atmospheric CO_2 in the development of products and services. Such potential of these technologies is capturing serious attention of the industry, investment communities, and some governments, which are interested in mitigating climate changes from the effects of greenhouse gases and being supportive of a circular economy. Five key categories of CO_2 -derived products and services have been the focus of studies and technoeconomic analyses. These categories include fuels, chemicals, building materials from minerals, building materials from wastes, and CO_2 used as an enhancer of yields from biological processes. New pathways involving chemical and biological conversion of CO_2 to aforementioned products are being studied.

We believe that the abovementioned CO_2 utilization technologies, in their present condition, may be useful under special circumstances (e.g., in those places where fossil fuel is very expensive or not available at all). Also, their use is likely to remain limited to small-sized local applications—at least in the short- to medium-term future. The reason for this is despite all the potential benefits of those technologies as outlined above, there is presently an unfavorable aspect of those technologies that needs to be improved for their application to be picked up on a wider scale. And that aspect is their high capital and production costs in relation to the corresponding cost parameters for the same materials produced from conventional technologies. To some extent, that is quite understandable. The technologies are in the initial stages of development/commercialization. The plant and equipment sizes are very small from an industrial point of view. Hence, their costs (especially of CO₂ capture plant, electrolyzer units, and electricity costs) are too high. The costs are likely to reduce as plants are built in larger sizes. And lastly, but very importantly, active regulatory support of governments and more liberal funding are needed. Public response and acceptance of those low-carbon products (possibly at higher prices) will be very helpful towards creating early markets for the CO₂-derived products with verifiable climate benefits.

Contents

4	Introduction	7
	Introduction Summery	
2	Summary	9
	Objective and scope of report	9
	General overview of technologies	10
	l echnologies evaluated	11
	Sunfire technology for syngas	11
	Sunfire technology for methane	12
	HZI/ETOGAS technology for methane	13
	Process economics	15
	Scope of process economics	15
	Plant modularization	16
	Plant economics	16
	Overall conclusion about economics	16
3	Technologies status	25
	Developing technologies	29
	Sunfire GmbH co-electrolysis technology for syngas	29
	Hitachi Hozen INOVA/ETOGAS technology for SNG	30
	Haldor Topsoe technology for SNG	31
	Det Norske Veritas (DNV) GL Electro-catalytic technology for formic acid	32
	Carbon recycling international (CRI) technology for methanol	34
	Carbon Engineering (CE) technology for synfuels	36
	BSE Engineering technology for methanol	37
4	Technical review	38
	Technical overview of process	39
	CO ₂ capture from air	39
	Electrolysis	43
	Alkaline water electrolyzer	46
	Solid Polymer Electrolyzer (SPE)	49
	Electrolysis efficiency	53
	Co-electrolysis of steam and CO ₂	54
	Electrolyte	55
	Cathode or fuel electrode	56
	Anode or oxygen electrode	56
	Methanation	57
	Reaction conditions	57
	Gas Hourly Space Velocity	58
	H ₂ to CO ₂ Molar Ratio	59
	Reactor Feed Module	60
	Reverse water gas shift reaction	61
	Effect of weight hourly space velocity	63
	Effect of WHSV on CO and CH $_{4}$ selectivities	63
5	Conversion of CO ₂ to Syngas for a Fischer-Tronsch fuels plant by Co-electrolysis of	00
CO,	and steam	66
002	Scope of process economics	66
	Process overview	67
	Process description	62
	Syngas production—Section 100	60
	Process discussion	70
	Feedstock	70
		10

	Renewable electric energy	71
	Plant modularization	71
	Plant size	71
	Materials of construction	71
	Miscellaneous plant sections	71
	Cost estimates	74
	Fixed capital costs	74
	Production costs	75
	Conclusion	75
6	Conversion of CO ₂ to methane by Co-electrolysis of CO ₂ and steam	81
	Scope of process economics	81
	Process overview	82
	Process description	82
	Syngas production—Section 100	83
	Methane production—Section 200	84
	Process discussion	86
	Feedstock	86
	Renewable electric energy	87
	Selection and design of methanation reactors	87
	Plant modularization	88
	Plant size	88
	Materials of construction	88
	Miscellaneous plant sections	88
	Cost estimates	93
	Fixed capital costs	93
	Production costs	94
	Conclusion	94
7	Production of methane from industrial CO ₂ emissions and electrolytic H ₂ from water	102
	Scope of process economics	103
	Process overview	103
	Process description	104
	Hydrogen and carbon dioxide production—Section 100	104
	Methane production—Section 200	106
	Process discussion	108
	Feedstock	108
	Renewable electric energy	109
	Selection and design of methanation reactors	109
	Plant modularization	110
	Plant size	110
	Materials of construction	110
	Miscellaneous plant sections	110
	Cost estimates	115
	Fixed capital costs	115
	Production costs	115
	Conclusion	116
	Desian conditions	125
	Cost bases	125
	Capital investment	125
	Production costs	126
	Effect of operating level on production costs	127

Tables

Table 2.1 Conversion of steam and CO ₂ to syngas for a F-T plant by co-electrolysis process— Design bases and assumptions	12
Table 2.2 Conversion of CO_2 to methane by co-electrolysis of CO_2 and steam—Design bases and	
assumptions	13
Table 2.3 Production of methane from industrial CO ₂ emissions and electrolytic hydrogen—Design	. –
bases and assumptions	15
Table 2.4 Conversion of steam and CO ₂ to syngas for a F-T plant by co-electrolysis process—Total	
capital investment	18
Table 2.5 Conversion of steam and CO_2 to syngas for a F-T plant by co-electrolysis process—	
Production cost	19
Table 2.6 Conversion of CO ₂ to methane by co-electrolysis of CO ₂ and steam—Total fixed capital	20
Table 2.7 Conversion of CO ₂ to methane by co-electrolysis of CO ₂ and steam—Production cost	21
Table 2.8 Production of methane from industrial CO ₂ emissions and electrolytic hydrogen—Total	
fixed capital	23
Table 5.1 Conversion of steam and CO ₂ to syngas for a F-T plant by co-electrolysis process—	
Design bases and assumptions	70
Table 5.2 Conversion of steam and CO ₂ to syngas for a F-T plant by co-electrolysis process—Main	
stream flows	72
Table 5.3 Conversion of steam and CO ₂ to syngas for a F-T plant by co-electrolysis process—	
Maior equipment list	73
Table 5.4 Conversion of steam and CO_2 to syngas for a E-T plant by co-electrolysis process—	
Litilities summary	74
Table 5.5 Conversion of steam and CO_2 to syndas for a F-T plant by co-electrolysis process—Total	, ,
capital investment	77
Table 5.6 Conversion of steam and CO_2 to syngas for a E-T plant by co-electrolysis process	
Production costs	78
Table 6.1 Conversion of CO ₂ to methane by co-electrolysis of CO ₂ and steam. Design bases and	10
Table 0.1 Conversion of CO2 to methatile by co-electrolysis of CO2 and steam—Design bases and	96
Table 6.2 Conversion of CO- to mothane by an electrolygical CO- and steam. Main stream flows	00
Table 6.2 Conversion of ctoom and CO ₂ to evence for a E T plant by an electrolysis process	09
Table 6.5 Conversion or steam and CO ₂ to syngas for a F-T plant by co-electrolysis process—	01
Major equipment list	91
Table 6.4 Conversion of CO_2 to methane by co-electrolysis of CO_2 and Steam —Utilities summary	93
Table 6.5 Conversion of CO_2 to methane by co-electrolysis of CO_2 and steam— Lotal fixed capital	96
Table 6.6 Conversion of CO_2 to methane by co-electrolysis of CO_2 and steam—Production costs	97
Table 7.1 Production of methane from industrial CO ₂ emissions and electrolytic hydrogen—Design	
bases and assumptions	108
Table 7.2 Production of methane from industrial CO ₂ emissions and electrolytic hydrogen—Main	
stream flows	111
Table 7.3 Production of methane from industrial CO ₂ emissions and electrolytic hydrogen—Major	
equipment list	113
Table 7.4 Production of methane from industrial CO2 emissions and electrolytic hydrogen-l	Jtilities
summary	114
Table 7.5 Production of methane from industrial CO ₂ emissions and electrolytic hydrogen—Total	
fixed capital	117
Table 7.6 Production of methane from industrial CO ₂ emissions and electrolytic hydrogen—	
Production costs	118

Figures

Figure 3.1 Sources and current/potential outlets for CO ₂	28
Figure 3.2 2017 World consumption of CO_2 (thousand metric tons)	28
Figure 3.3 Schematic of Sunfire syngas technology	30
Figure 3.4 Overall energy consumption in H-T TREMP process	32
Figure 3.5 Schematic of DNV ECOFORM electrolysis reactor	33
Figure 3.6 Schematic of Counter-rotating Ring Receiver/Reactor/Recuperator (CR5)	34
Figure 3.7 Mass and energy balance of CRI Vulcanol technology	35
Figure 3.8 Overview of the Canadian Engineering Syncrude process	36
Figure 3.9 Process schematic of the CE Direct Air Capture Plant for CO ₂	37
Figure 3.10 Schematic of BSE Engineering methanol process	37
Figure 4.1A Coss-sectional views of a sorption material-filled layer and frame	41
Figure 4.1B Isometric view of a CO ₂ sorption module	42
Figure 4.2 Effect of electrolysis temperature on the electricity demand	45
Figure 4.3.1 Schematic sketch of a solid oxide electrolysis cell	45
Figure 4.3.2 Blown-out sketch of a solid oxide electrolysis cell	46
Figure 4.3.3 Basic sketch of an alkaline water electrolyzer	47
Figure 4.3.4 Basic sketch of a polymer membrane electrolyzer	50
Figure 4.3.5 Internal components of a polymer membrane electrolyzer	51
Figure 4.4.1 Effect of temperature and pressure on the equilibrium composition of methanation	
reaction output	58
Figure 4.4.2 Effect of the gas hourly space velocity of CO_2 on methanation reaction output	59
Figure 4.4.3 Effect of H ₂ to CO ₂ ratio in the feedstream on methanation reaction output	60
Figure 4.5 Effect of temperature on CO ₂ conversion for promoted iron-copper catalysts	62
Figure 4.6 Effect of temperature on CO and CH ₄ selectivities for promoted iron-copper catalysts	62
Figure 4.7 Effect of weight hourly space velocity on CO2 conversion for promoted iron-copper catalyst	s 63
Figure 4.8 Effect of weight hourly space velocity on CO and CH ₄ conversion for promoted iron-	
copper catalysts	64
Figure 5.2 Bird's eye-view of Sunfire syngas technology	67
Figure 5.3 Effect of electricity price on production cost and product value of syngas	80
Figure 6.2 Effect of electricity price on production cost and product value of synthetic methane	100
Figure 6.3 Effect of electricity price on production cost and product value of synthetic methane	101
Figure 7.2 Effect of electricity price on production cost and product value of synthetic methane	120

Figures of Appendix D

Figure 5.1 Conversion of steam and CO ₂ to syngas for a F-T Plant by co-electrolysis process	132
Figure 6.1 Conversion of CO ₂ to methane by co-electrolysis of CO ₂ and steam	133
Figure 7.1 Production of methane from industrial CO ₂ emissions and electrolytic H ₂	134

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Histither IHS
Markit or the author(s) has any obligation to update this presentation in the event that any content, opinion, statements, estimates, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

