

Refinery Configurations for Maximizing Crude Oil to Chemicals Production

PEP Report 303B September 2020

Process Economics Program

PEP Report 303B

Refinery Configurations for Maximizing Crude Oil to Chemicals Production

Soumitro Nagpal, Executive Technical Director

Abstract

There is a growing consensus across the global energy and chemicals industry that in the coming years, crude oil refineries will be configured for significantly higher conversion of crude to chemicals than has been done in the past. This has been driven by the relatively slower growth rate in global demand for refinery fuels such as diesel, jet, and gasoline relative to petrochemicals. Refinery margins have been poor and are increasingly at the mercy of crude oil price fluctuations and geopolitics. Margins of integrated refinery-petrochemical complexes are expected to be higher and more predictable in the coming decades.

Several large projects have recently been commissioned or are in conceptual/feed engineering/construction stage that have configured the traditional crude oil refinery to increase chemicals production for eventual production of petrochemicals. These complexes plan to use a mix of medium and heavy crude oils and employ various combinations of bottoms upgrading process technologies to increase feedstock conversion to light olefins and naphtha range products. Naphtha thus produced are used to feed steam cracker and aromatics complexes for conversion to light olefins and BTX aromatics. Gasoline, jet, diesel, and fuel oil productions from such complexes are significantly reduced from that in traditional fuels producing refineries.

In the report, PEP provides a brief overview of refinery configurations for fuels production and discuss the major routes that are being used to reconfigure fuels refineries globally to make more chemicals. Global and regional trends using various types of refinery conversion units and overall refinery integration levels are presented.

The core of the report evaluates three mega refinery-petrochemical projects that are prime examples of refinery reconfiguration for chemicals production. The first is Reliance's Jamnagar India based COTC project that plans to more than double crude conversion to chemicals at the world's largest refinery. The project will convert the sites entire FCC capacity to Petro-FCC, and will add large naphtha catalytic cracking, steam cracking, and aromatics blocks to raise chemicals conversion to over 35% for the Jamnagar supersite.

The second project PEP evaluated is S-OIL Ulsan (S.Korea) RUC-ODC project that has recently built the world's first commercial high severity FCC (HS-FCC) unit coupled with heavy oil hydrodesulfurization and associated units to reduce high sulfur fuel oil production at the world's fifth largest crude refinery. The project has raised crude conversion to chemicals from 8% to 13% for the refinery.

The third project evaluated is Kuwait KNPC/KIPIC Al-Zour Refinery and Petrochemicals. The refinery is presently under construction while the PRIZe petrochemicals project is in FEED engineering stage. The original refinery was designed to be a purely fuels producing refinery. However,

the subsequent reconfiguration and PRIZe projects will allow the complex to convert 13.5% of its 615,000 BPD crude capacity into chemicals.

For each of these projects, PEP presents its understanding of the refinery configurations that have been built or are planned with detailed unit level block flow diagrams, description of each of the major process units and technology used, unit level and overall complex product yields, hydrogen and utility balances, ISBL and OSBL investment costs, production economics, and margin analysis.

Contents

1	Introduction	9
	Terminology	12
2	Summary	13
	Reliance COTC	14
	S-OIL RUC-ODC project	16
	KIPIC AI Zour refinery and PRIZe project	18
	Sensitivity to crude price trends	21
3	Refinery configurations	23
	Configurations for fuels production	23
	Carbon rejection	25
	Hydrogen addition	26
	Configurations for chemicals production	28
	Integration with steam cracking	29
	Integration with aromatics complex	31
	Full Integration	34
	Economic arivers for COTUS	35
	Global refining capacity and trends	37
	Global refinery integration levels in 2019	41
	Crude to chemicals price margins	44
4	Reliance Jamnagar COTC project	47
	Existing retinery configuration	49
	Reinery complex	49
	Crude distillation (CDU)	52
	Saturated gas conditioning (SGCO)	52
		53
		53
	Gasoli hydrotreating (GOHT)	54
	Polinery bydrogon	55
	Refinely flydrogen Retacka agaifiantian complex	50
	Petcoke gasilication complex	57
	COTC project	59
	ECC revenue	62
	Naphtha catalutic cracker	02
	Mixed Feed Steam Cracker (MESC)	66
	Aromatics block	67
	CCR reforming	67
	BTX extraction	68
	Paravylene	68
	Diesel/LCO hydrocracker revamp	68
	Alkylation and butamer	69
	Complex ethylene and propylene balances	69
	COTC refinery hydrogen balance	69
		70
	COTC project economics	71
	ISBL and OSBL capex	72
	Production economics	73
	Existing refinery gross refining margin	77
	Sensitivity to crude price trends	77
		11

5	S-OIL UIsan refinery and petrochemical complex S-Oil refinery prior to RUC/ODC project	79 80
	Crude distillation (CDU)	81
	Saturated gas plant (SGU)	82
	Vacuum distillation (VDU)	83
	Distillate hydrotreating	83
	Hydrocracking (HYC) process	83
	Residue hydro desulfurization (RHDS)	84
	Solvent deasphalting (SDA)	84
	Resid fluid catalytic cracker (RFCC)	84
	Lube base oil plant	85
	Aromatics No.1	85
	Aromatics No.2	85
	MTBE	86
	Alkylation	86
	Product blending	86
	Light naphtha	86
	Gasoline	86
	Kerosene/Jet fuel	87
	Diesel	87
	Fuel oil	87
	Light ends	87
	RUC/ODC project	88
	Heavy oil hydrodesulfurization (HDS)	89
	High Severity FCC (HS-FCC)	91
	Downstream processes	93
	HS-FCC C4s processing	96
	MTBE	98
	Super fractionation	98
	Polypropylene (PP)	99
	Propylene oxide (PO)	99
	Complex hydrogen balance (Post RUC-ODC)	100
	Sulfur block (Post RUC-ODC)	100
	Utility consumptions	101
	Phase 2 revamp	101
	RUC-ODC project economics	102
	ISBL and OSBL capex	102
	Production economics	103
~	Sensitivity to LSFO-HSFO spread	108
0	Al Zour refinery and petrochemicals complex	109
	Ar-zour reintery project	109
	Atmospheric residue desulfurization (APDS)	110
	Diosel hydrotroating	111
	Kere hydrotreating	112
	Light naphtha hydrotreating	112
	Sat-das plant	112
	Hydrogen production	113
	Sulfur block	113
	PRIZe petrochemical refinery integration project	113
	Resid fluid catalytic cracking	114
	Heavy naphtha hydrotreating	114
	Catalytic reforming	115
	Aromatics complex	115

Mixed Feed Steam Cracker	116
Propylene via ethylene metathesis (OCT)	116
Polyethylene	117
Polypropylene	117
MTBE and alkylation	117
Utility consumptions	118
Al-Zour–PRIZe overall project economics	119
ISBL and OSBL capex	120
Production economics	120

Tables

Table 1.1 Grassroots COTC projects—recently completed and planned	11
Table 2.1 Reliance refinery product slate before and after COTC project	15
Table 2.2 S-OIL Ulsan refinery product slate before and after RUC/ODC project	18
Table 2.3 KIPIC AI Zour-PRIZe refinery product slate	20
Table 2.4 Project summary—Crude barrels upgradation approach	22
Table 2.5 Project economics summary	22
Table 3.1 Feed crude oil characteristics	24
Table 3.2 World's largest refineries with over 10% integration to chemicals	42
Table 4.1 Reliance Jamnagar refinery process units with capacity	50
Table 4.2 Reliance Jamnagar refinery product distribution	50
Table 4.3 Reliance J1J2 combined CDU feed and product characteristics	52
Table 4.4 Reliance J1J2 combined VDU feed and product characteristics	53
Table 4.5 Reliance J1J2 DCU feed and product characteristics	54
Table 4.6 Reliance J1J2 Gasoil hydrotreating unit(s) feed and product characteristics	55
Table 4.7 Reliance J1J2 FCCU(s) estimated feed and product distribution	56
Table 4.8 Reliance existing refinery hydrogen balance	57
Table 4.9 FCC revamp to PetroFCC—estimated feed and product distribution	64
Table 4.10 FCC unsat gas plant balance (with Coker gases)	65
Table 4.11 Naphtha catalytic cracker feeds and product yields	66
Table 4.12 Mixed Feed Steam Cracker (MFSC) feeds and product yields	67
Table 4.13 RIL COTC ethylene and propylene balance	69
Table 4.14 COTC refinery hydrogen balance	70
Table 4.15 Utilities consumption RIL COTC project	71
Table 4.16 ISBL capex estimation of individual units in COTC project (third quarter 2019 USGC)	73
Table 4.17 ISBL, OSBL, and total fixed capital estimated for the RIL COTC project	74
Table 4.18 Reliance COTC variable vosts and production costs (India third quarter 2019)	76
Table 4.19 Reliance existing refinery gross refining margin estimation (India third quarter 2019)	78
Table 5.1 S-OIL Ulsan refinery major process units prior to RUC-ODC project	80
Table 5.2 S-Oil feed and product state (pre-RUC/ODC)	81
Table 5.3 Crude and condensate processing facilities	81
Table 5.4 CDU feed and product characteristics	82
Table 5.5 CFU feed and product characteristics	82
Table 5.6 VDU feed and product characteristics	83
Table 5.7 Gasoline blending	87
Table 5.8 Main units in RUC/ODC project	88
Table 5.9 Primary products from RUC/ODC project as announced by S-OIL	89
Table 5.10 S-OIL Ulsan refinery feed and product state (post-RUC-ODC project)	89
Table 5.11 RUC HDS feed and product distribution estimate	90
Table 5.12 Typical HS-FCC and conventional FCC operating conditions	92
Table 5.13 HS-FCC operating parameters and yields for various feed types	93

Table 5.14 HS-FCC commercial design parameters	94
Table 5.15 HS-ECC feed and product distribution estimate	95
Table 5.16 HS-ECC C4s composition actimate and flows	08
Table 5.17 O rose of a balance and nows	30
Table 5.17 Complex H ₂ balance	101
Table 5.18 Utilities consumption S-OIL RUC-UDC project	102
Table 5.19 ISBL capex estimation of individual units in S-OIL RUC-ODC project (third quarter 2019	
USGC)	104
Table 5.20 Total project fixed capital investment (USGC and S. Korea)	105
Table 5.21 S-OIL Ulsan refinery gross refining margin before RUC-ODC project implementation.	106
Table 5.22 S-OIL RUC-ODC variable costs and production economics (S. Korea third quarter 2019)	107
Table 6.1 AI-Zour refinery and PRIZe project major process units and capacity	110
Table 6.2 AI-Zour refinery CDU feed and product flows and properties (total)	111
Table 6.3 ARDS product yields	111
Table 6.4 Diesel hydrotreater yields	112
Table 6.5 Complex hydrogen balance	113
Table 6.6 PRIZe RFCC feed and product yields	115
Table 6.7 PRIZe heavy naphtha hydrotreating feed and product yields	115
Table 6.8 Mixed Feed Steam Cracker (MFSC) feed and product yields	116
Table 6.9 Complex C4 balance	118
Table 6.10 Utilities consumption AI Zour and PRIZe project	119
Table 6.11 ISBL capex estimation of individual units in AI Zour and PRIZe projects (third quarter	
2019 USGC)	122
Table 6.12 AI Zour and PRIZe project fixed capital investment (USGC and Kuwait)	123
Table 6.13 AI Zour PRIZe variable costs and production economics (Kuwait third quarter 2019)	124

Figures

Figure 3.1 Residue upgradation route selection depends on feed crude properties	26
Figure 3.2 Refinery-petrochemicals integration levels	29
Figure 3.3 World light naphtha production source and demand by end use	31
Figure 3.4 Integration of light naphtha steam cracker with refinery	31
Figure 3.5 Aromatics complex integration with refinery	33
Figure 3.6 World heavy naphtha production source and demand by end use	33
Figure 3.7 Full integration of refinery-steam cracker-aromatics complex	35
Figure 3.8 World fuels and primary petrochemicals demand growth projections	36
Figure 3.9 World fuels and primary petrochemicals annual demand	36
Figure 3.10 World and regional refining capacity (2018)	37
Figure 3.11 Global refinery distillation and conversion unit capacity trends (1990–2018)	38
Figure 3.12 Global refinery distillation and conversion unit capacity trends (1990–2018)	39
Figure 3.13 Asia-pacific distillation and conversion unit capacity trends (1990–2018)	39
Figure 3.14 North America distillation and conversion unit capacity trends (1990–2018)	40
Figure 3.15 Europe distillation and conversion unit capacity trends (1990–2018)	40
Figure 3.16 Middle East distillation and conversion unit capacity trends (1990–2018)	41
Figure 3.17 Global refinery integration levels and nature of integration	43
Figure 3.18 United States refinery integration levels and nature of integration	44
Figure 3.19 Price margins of primary chemicals over Arab Medium crude (SEA/APAC)	45
Figure 3.20 Relative volatility of price margins with Arab Medium crude (SEA/APAC)	46
Figure 4.2 Integration of petcoke gasification unit with refinery	58
Figure 4.3 Reliance Jamnagar petcoke gasification complex configuration	59
Figure 4.4 Block flow diagram of Jamnagar ROGC multi-feed gas cracker	60
Figure 4.5 Reliance Jamnagar Refinery off-gas cracker (ROGC) estimated yields	61
Figure 4.8 FCC propylene yield as a function of feed and reactor severity	63
Figure 4.9 Reliance Jamnagar complex gross refining margins	77
Figure 5.1 S-OIL Ulsan refinery layout	79
Figure 5.4 Axens S-Oil refinery configuration with new Hyvahl HDS and HS-FCC	91
Figure 5.5 Commercial HS-FCC reactor configuration	94
Figure 5.6 HS-FCC full range naphtha processing scheme	96
Figure 5.7 C4 and butylene yields in FCCs	97
Figure 5.8 S-OIL HS-FCC C4s processing configuration	97
Figure 5.9 Impact of LSFO-HSFO price spread on RUC-ODC project economics	108

Appendix B Figures

Figure 4.1 Reliance existing refinery configuration (J1J2, Gasification, and ROGC)	
Figure 4.6 Reliance revamped refinery configuration (J1J2, Gasification, ROGC, and COTC	
primary conversion units) 13	32
Figure 4.7 Reliance revamped refinery configuration (New Reformer and Aromatics block) 13	33
Figure 5.2 S-OIL Ulsan refinery configuration prior to RUC-ODC project 13	34
Figure 5.3 S-OIL Ulsan refinery configuration after RUC-ODC project 13	35
Figure 6.1 AI Zour-PRIZe refinery petrochemicals complex process configuration 13	36

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Histither IHS
Markit or the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or
otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

