Refinery Configurations for Maximizing Crude Oil to Chemicals Production

PEP Report 303B
September 2020
Refinery Configurations for Maximizing Crude Oil to Chemicals Production

Soumitro Nagpal, Executive Technical Director

Abstract

There is a growing consensus across the global energy and chemicals industry that in the coming years, crude oil refineries will be configured for significantly higher conversion of crude to chemicals than has been done in the past. This has been driven by the relatively slower growth rate in global demand for refinery fuels such as diesel, jet, and gasoline relative to petrochemicals. Refinery margins have been poor and are increasingly at the mercy of crude oil price fluctuations and geopolitics. Margins of integrated refinery-petrochemical complexes are expected to be higher and more predictable in the coming decades.

Several large projects have recently been commissioned or are in conceptual/feed engineering/construction stage that have configured the traditional crude oil refinery to increase chemicals production for eventual production of petrochemicals. These complexes plan to use a mix of medium and heavy crude oils and employ various combinations of bottoms upgrading process technologies to increase feedstock conversion to light olefins and naphtha range products. Naphtha thus produced are used to feed steam cracker and aromatics complexes for conversion to light olefins and BTX aromatics. Gasoline, jet, diesel, and fuel oil productions from such complexes are significantly reduced from that in traditional fuels producing refineries.

In the report, PEP provides a brief overview of refinery configurations for fuels production and discuss the major routes that are being used to reconfigure fuels refineries globally to make more chemicals. Global and regional trends using various types of refinery conversion units and overall refinery integration levels are presented.

The core of the report evaluates three mega refinery-petrochemical projects that are prime examples of refinery reconfiguration for chemicals production. The first is Reliance’s Jamnagar India based COTC project that plans to more than double crude conversion to chemicals at the world’s largest refinery. The project will convert the sites entire FCC capacity to Petro-FCC, and will add large naphtha catalytic cracking, steam cracking, and aromatics blocks to raise chemicals conversion to over 35% for the Jamnagar supersite.

The second project PEP evaluated is S-OIL Ulsan (S.Korea) RUC-ODC project that has recently built the world’s first commercial high severity FCC (HS-FCC) unit coupled with heavy oil hydrosulfurization and associated units to reduce high sulfur fuel oil production at the world’s fifth largest crude refinery. The project has raised crude conversion to chemicals from 8% to 13% for the refinery.

The third project evaluated is Kuwait KNPC/KIPIC Al-Zour Refinery and Petrochemicals. The refinery is presently under construction while the PRIZE petrochemicals project is in FEED engineering stage. The original refinery was designed to be a purely fuels producing refinery. However,
the subsequent reconfiguration and PRIZe projects will allow the complex to convert 13.5% of its 615,000 BPD crude capacity into chemicals.

For each of these projects, PEP presents its understanding of the refinery configurations that have been built or are planned with detailed unit level block flow diagrams, description of each of the major process units and technology used, unit level and overall complex product yields, hydrogen and utility balances, ISBL and OSBL investment costs, production economics, and margin analysis.
Contents

1 **Introduction** 9
2 **Summary** 13
 Reliance COTC 14
 S-OIL RUC-ODC project 16
 KIPIC Al Zour refinery and PRIZe project 18
 Sensitivity to crude price trends 21
3 **Refinery configurations** 23
 Configurations for fuels production 23
 Carbon rejection 25
 Hydrogen addition 26
 Configurations for chemicals production 28
 Integration with steam cracking 29
 Integration with aromatics complex 31
 Full integration 34
 Economic drivers for COTCs 35
 Global refining capacity and trends 37
 Global refinery integration levels in 2019 41
 Crude to chemicals price margins 44
4 **Reliance Jamnagar COTC project** 47
 Existing refinery configuration 49
 Refinery complex 49
 Crude distillation (CDU) 52
 Saturated gas conditioning (SGCU) 52
 Vacuum distillation (VDU) 53
 Delayed coking (DCU) 53
 Gasoil hydrotreating (GOHT) 54
 Fluid catalytic cracking (FCCU) 55
 Refinery hydrogen 56
 Petcoke gasification complex 57
 Refinery off-gas cracker (ROGC) 59
 COTC project 61
 FCC revamp 62
 Naphtha catalytic cracker 65
 Mixed Feed Steam Cracker (MFSC) 66
 Aromatics block 67
 CCR reforming 67
 BTX extraction 68
 Paraxylene 68
 Diesel/LCO hydrocracker revamp 68
 Alkylation and butamer 69
 Complex ethylene and propylene balances 69
 COTC refinery hydrogen balance 69
 Utility consumptions 70
 COTC project economics 71
 ISBL and OSBL capex 72
 Production economics 73
 Existing refinery gross refining margin 77
 Sensitivity to crude price trends 77
5 S-OIL Ulsan refinery and petrochemical complex

S-Oil refinery prior to RUC/ODC project
Crude distillation (CDU)
Saturated gas plant (SGU)
Vacuum distillation (VDU)
Distillate hydrotreating
Hydrocracking (HYC) process
Residue hydro desulfurization (RHDS)
Solvent deasphalting (SDA)
Resid fluid catalytic cracker (RFCC)
Lube base oil plant
Aromatics No.1
Aromatics No.2
MTBE
Alkylation
Product blending
Light naphtha
Gasoline
Kerosene/Jet fuel
Diesel
Fuel oil
Light ends

RUC/ODC project
Heavy oil hydrodesulfurization (HDS)
High Severity FCC (HS-FCC)
Downstream processes
HS-FCC C4s processing
MTBE
Super fractionation
Polypropylene (PP)
Propylene oxide (PO)
Complex hydrogen balance (Post RUC-ODC)
Sulfur block (Post RUC-ODC)
Utility consumptions
Phase 2 revamp

RUC-ODC project economics
ISBL and OSBL capex
Production economics
Sensitivity to LSFO-HSFO spread

6 KIPIC Al-Zour refinery and petrochemicals complex

Al-Zour refinery project
Crude distillation (CDU)
Atmospheric residue desulfurization (ARDS)
Diesel hydrotreating
Kero hydrotreating
Light naphtha hydrotreating
Sat-gas plant
Hydrogen production
Sulfur block

PRiZe petrochemical refinery integration project
Resid fluid catalytic cracking
Heavy naphtha hydrotreating
Catalytic reforming
Aromatics complex
Mixed Feed Steam Cracker
Propylene via ethylene metathesis (OCT)
Polyethylene
Polypropylene
MTBE and alkylation
Utility consumptions
Al-Zour–PRIZe overall project economics
ISBL and OSBL capex
Production economics

Tables

Table 1.1 Grassroots COTC projects—recently completed and planned
Table 2.1 Reliance refinery product slate before and after COTC project
Table 2.2 S-OIL Ulsan refinery product slate before and after RUC/ODC project
Table 2.3 KIPIC Al Zour–PRIZe refinery product slate
Table 2.4 Project summary—Crude barrels upgradation approach
Table 2.5 Project economics summary
Table 3.1 Feed crude oil characteristics
Table 3.2 World’s largest refineries with over 10% integration to chemicals
Table 4.1 Reliance Jamnagar refinery process units with capacity
Table 4.2 Reliance Jamnagar refinery product distribution
Table 4.3 Reliance J1J2 combined CDU feed and product characteristics
Table 4.4 Reliance J1J2 combined VDU feed and product characteristics
Table 4.5 Reliance J1J2 DCU feed and product characteristics
Table 4.6 Reliance J1J2 Gasoil hydrotreating unit(s) feed and product characteristics
Table 4.7 Reliance J1J2 FCCU(s) estimated feed and product distribution
Table 4.8 Reliance existing refinery hydrogen balance
Table 4.9 FCC revamp to PetroFCC—estimated feed and product distribution
Table 4.10 FCC unsat gas plant balance (with Coker gases)
Table 4.11 Naphtha catalytic cracker feeds and product yields
Table 4.12 Mixed Feed Steam Cracker (MFSC) feeds and product yields
Table 4.13 RIL COTCethylene and propylene balance
Table 4.14 COTC refinery hydrogen balance
Table 4.15 Utilities consumption RIL COTC project
Table 4.16 ISBL capex estimation of individual units in COTC project (third quarter 2019 USGC)
Table 4.17 ISBL, OSBL, and total fixed capital estimated for the RIL COTC project
Table 4.18 Reliance COTC variable vosts and production costs (India third quarter 2019)
Table 4.19 Reliance existing refinery gross refining margin estimation (India third quarter 2019)
Table 5.1 S-OIL Ulsan refinery major process units prior to RUC-ODC project
Table 5.2 S-Oil feed and product state (pre-RUC/ODC)
Table 5.3 Crude and condensate processing facilities
Table 5.4 CDU feed and product characteristics
Table 5.5 CFU feed and product characteristics
Table 5.6 VDU feed and product characteristics
Table 5.7 Gasoline blending
Table 5.8 Main units in RUC/ODC project
Table 5.9 Primary products from RUC/ODC project as announced by S-OIL
Table 5.10 S-OIL Ulsan refinery feed and product state (post-RUC-ODC project)
Table 5.11 RUC HDS feed and product distribution estimate
Table 5.12 Typical HS-FCC and conventional FCC operating conditions
Table 5.13 HS-FCC operating parameters and yields for various feed types
Table 5.14 HS-FCC commercial design parameters
Table 5.15 HS-FCC feed and product distribution estimate
Table 5.16 HS-FCC C4s composition estimate and flows
Table 5.17 Complex H2 balance
Table 5.18 Utilities consumption S-OIL RUC-UDC project
Table 5.19 ISBL capex estimation of individual units in S-OIL RUC-ODC project (third quarter 2019 USGC)
Table 5.20 Total project fixed capital investment (USGC and S. Korea)
Table 5.21 S-OIL Ulsan refinery gross refining margin before RUC-ODC project implementation
Table 5.22 S-OIL RUC-ODC variable costs and production economics (S. Korea third quarter 2019)
Table 6.1 Al-Zour refinery and PRIZe project major process units and capacity
Table 6.2 Al-Zour refinery CDU feed and product flows and properties (total)
Table 6.3 ARDS product yields
Table 6.4 Diesel hydrotreater yields
Table 6.5 Complex hydrogen balance
Table 6.6 PRIZe RFCC feed and product yields
Table 6.7 PRIZe heavy naphtha hydrotreating feed and product yields
Table 6.8 Mixed Feed Steam Cracker (MFSC) feed and product yields
Table 6.9 Complex C4 balance
Table 6.10 Utilities consumption Al Zour and PRIZe project
Table 6.11 ISBL capex estimation of individual units in Al Zour and PRIZe projects (third quarter 2019 USGC)
Table 6.12 Al Zour and PRIZe project fixed capital investment (USGC and Kuwait)
Table 6.13 Al Zour PRIZe variable costs and production economics (Kuwait third quarter 2019)
Figures

Figure 3.1 Residue upgradation route selection depends on feed crude properties 26
Figure 3.2 Refinery-petrochemicals integration levels 29
Figure 3.3 World light naphtha production source and demand by end use 31
Figure 3.4 Integration of light naphtha steam cracker with refinery 31
Figure 3.5 Aromatics complex integration with refinery 33
Figure 3.6 World heavy naphtha production source and demand by end use 33
Figure 3.7 Full integration of refinery-steam cracker-aromatics complex 35
Figure 3.8 World fuels and primary petrochemicals demand growth projections 36
Figure 3.9 World fuels and primary petrochemicals annual demand 36
Figure 3.10 World and regional refining capacity (2018) 37
Figure 3.11 Global refinery distillation and conversion unit capacity trends (1990–2018) 38
Figure 3.12 Global refinery distillation and conversion unit capacity trends (1990–2018) 39
Figure 3.13 Asia-pacific distillation and conversion unit capacity trends (1990–2018) 39
Figure 3.14 North America distillation and conversion unit capacity trends (1990–2018) 40
Figure 3.15 Europe distillation and conversion unit capacity trends (1990–2018) 40
Figure 3.16 Middle East distillation and conversion unit capacity trends (1990–2018) 41
Figure 3.17 Global refinery integration levels and nature of integration 43
Figure 3.18 United States refinery integration levels and nature of integration 44
Figure 3.19 Price margins of primary chemicals over Arab Medium crude (SEA/APAC) 45
Figure 3.20 Relative volatility of price margins with Arab Medium crude (SEA/APAC) 46
Figure 4.2 Integration of petcoke gasification unit with refinery 58
Figure 4.3 Reliance Jamnagar petcoke gasification complex configuration 59
Figure 4.4 Block flow diagram of Jamnagar ROGC multi-feed gas cracker 60
Figure 4.5 Reliance Jamnagar Refinery off-gas cracker (ROGC) estimated yields 61
Figure 4.8 FCC propylene yield as a function of feed and reactor severity 63
Figure 4.9 Reliance Jamnagar complex gross refining margins 77
Figure 5.1 S-OIL Ulsan refinery layout 79
Figure 5.4 Axens S-Oil refinery configuration with new Hyvahl HDS and HS-FCC 91
Figure 5.5 Commercial HS-FCC reactor configuration 94
Figure 5.6 HS-FCC full range naphtha processing scheme 96
Figure 5.7 C4 and butylene yields in FCCs 97
Figure 5.8 S-OIL HS-FCC C4s processing configuration 97
Figure 5.9 Impact of LSFO-HSFO price spread on RUC-ODC project economics 108

Appendix B Figures

Figure 4.1 Reliance existing refinery configuration (J1J2, Gasification, and ROGC) 131
Figure 4.6 Reliance revamped refinery configuration (J1J2, Gasification, ROGC, and COTC primary conversion units) 132
Figure 4.7 Reliance revamped refinery configuration (New Reformer and Aromatics block) 133
Figure 5.2 S-OIL Ulsan refinery configuration prior to RUC-ODC project 134
Figure 5.3 S-OIL Ulsan refinery configuration after RUC-ODC project 135
Figure 6.1 Al Zour-PRIZe refinery petrochemicals complex process configuration 136