PEP Report 308

Polyolefin Elastomers/Plastomers (POE/POP)

Susan L. Bell, Director of Polymer Processes

Abstract

Polyolefin elastomers (POE) and polyolefin plastomers (POP) are relatively new type of thermoplastic elastomer (TPE) developed in the 1990s. POE/POP are families of homogeneous ethylene-based or propylene-based random copolymer produced from single-site catalysts that bridged the performance gap between conventional polyolefins such as polyethylene and conventional elastomers like ethylene propylene diene monomer (EPDM). The density of POP is typically in the range of density of 0.886 to 0.912 g/cm³. Copolymer resins with lower density are called POE. Ethylene-based POE/POP have 65–91% ethylene and 9–35% linear alpha-olefin (LAO). LAO such as butene-1, hexene-1, or octene-1 are used. Propylene-based POE typically have 70–90% propylene, 10–30% ethylene or butene. Most of these copolymers are produced by solution processes.

POE/POP have garnered attention because of their low density, chemical resistance, processing advantages, good resilience without permanent deformation, applications in plastic recycling, and relatively low cost. Demand for POE/POP has grown at a significant rate. C2 POE/POP’s unique properties make them desirable for flexible packaging, molded and extruded products, and elastomeric foamed compound. Production of C2 POPs and POEs, which used to be in the hands of limited number of producers such as Dow ExxonMobil and Mitsui Elastomers, has recently seen an increasing number of new suppliers such as LG Chem, Borealis, Sadara, and SK/Sabic. Propylene-based (C3) POE is a niche product that is used as an impact modifier for automotive related application. Demand for C3 POE is expected to grow as it finds more use in new applications such as in plastic recycling.

This report will present an updated review of the single-site catalysts and process technologies used to produce C2 POE, C2 POP, and C3 POE. Process economic evaluation of these elastomers and plastomers will be presented.
Contents

1 Introduction

2 Summary
 - Industrial aspects 10
 - Technical aspects 12
 - Dow Solution processes 13
 - ExxonMobil Solution process 15
 - Other processes 17
 - Mitsui Solution process 17
 - Borealis’ Borceed™ process 17
 - SK Innovation’s Nexlene™ process 17
 - Economic aspects 17

3 Industry status
 - Introduction 22
 - Supply and demand 22
 - End markets 24
 - Plastic sustainability 25
 - Production 26
 - Process technology 26
 - Commercial POE/POP products 26

4 Technology
 - Introduction 29
 - Reaction chemistry 29
 - Polymerization processes 30
 - Dow Solution processes 31
 - ExxonMobil Solution process 35
 - Mitsui’s Solution process 40
 - Borealis’ Borceed™ process 41
 - SK Innovation’s Nexlene™ process 42

5 C2-Based POE/POP production by Dow’s Dowlex™ Solution loop process
 - Introduction 44
 - Process description 44
 - Section 100—Feed Treatment and catalyst preparation section 52
 - Section 200—Polymerization section 52
 - Section 300—Recovery section 53
 - Section 400—Product finishing and bagging section 53
 - Process discussion 53
 - Plant design capacity 53
 - Raw material 53
 - Polymerization reactor system 54
 - Catalysts 54
 - Reaction conditions 55
 - Polymer recovery 55
 - Material of construction 56
 - Environmental 57
 - Cost estimate 57
 - Capital costs 57
 - Production costs 62

6 C2-Based POE/POP production by ExxonMobil’s Solution process
 - Production costs 84
7 C3-Based POE production by ExxonMobil’s Solution process 89
 Introduction 89
 Process description 89
 Production costs 106

Tables

Table 1.1 Polyethylene types 8
Table 2.1 2018 Global C2 POE/POP producers by company 11
Table 2.2 2018 Global C3 POE/POP producers by company 11
Table 2.3 Commercially available POE/POP 12
Table 2.4 Polymerization processes 13
Table 2.5 Technical comparison 18
Table 2.6 Capital estimate comparison 19
Table 2.7 C2 POP production costs 20
Table 2.8 C2 POE and C3 POE production costs 21
Table 3.1 2018 Global C2 POE/POP producers by company 23
Table 3.2 2018 Global C3 POE producers by company 24
Table 3.3 Improved product properties of end-product from recycled plastics 26
Table 3.4 Commercially available POE/POP 27
Table 3.5 ExxonMobil’s EXACT™ POP and VISTAMAXX™ POE 27
Table 4.1 Solution polymerization processes 30
Table 4.2 Polymer properties 36
Table 4.3 Process conditions to produce different polymers with metallocene catalysts 39
Table 5.1 C2-Based POE/POP production by the Dowlex solution loop process—Design bases 45
Table 5.2 C2-Based POP production by the Dowlex solution loop process—Major stream flows 46
Table 5.3 C2-Based POP production by the Dowlex solution loop process—Major stream flows 47
Table 5.4 C2-based POE/POP production by the Dowlex solution loop process—Major equipment 49
Table 5.5 C2-based POE production by the Dowlex solution loop process—Utilities summary 51
Table 5.6 POP production by the Dowlex solution loop process—Utilities summary 52
Table 5.7 Patent example for reaction conditions 55
Table 5.8 Summary of major waste streams 57
Table 5.9 Carbon dioxide emission and water consumption 57
Table 5.10 C2-based POE/POP production by the Dowlex solution loop process—Total capital investment 60
Table 5.11 C2-based POE/POP production by the Dowlex solution loop process—Capital investment by section 61
Table 5.12 C2-based POE production by the Dowlex solution loop process—Production costs 63
Table 5.13 C2-based POP production by the Dowlex solution loop process—Production costs 65
Table 6.1 C2-Based POE/POP production by ExxonMobil’s solution process—Design bases 68
Table 6.2 C2-Based POE production by ExxonMobil’s solution process—Major stream flows 69
Table 6.3 C2-Based POP production by ExxonMobil’s solution process—Major stream flows 71
Table 6.4 C2-based POE/POP production by ExxonMobil’s solution process—Major equipment 73
Table 6.5 C2-based POE production by ExxonMobil’s solution process—Utilities summary 75
Table 6.6 C2-based POP production by ExxonMobil’s solution process—Utilities summary 75
Table 6.7 Process conditions to produce different polymers with metallocene catalysts 77
Table 6.8 Process conditions for design 77
Table 6.9 Summary of major waste streams 79
Table 6.10 Carbon dioxide emission and water consumption 79
Table 6.11 C2-based POE/POP production by ExxonMobil’s solution process—Total capital investment 82
Table 6.12 C2-based POE/POP production by ExxonMobil’s solution process—Capital investment by section 83
Table 6.13 C2-based POE production by ExxonMobil’s solution process—Production costs 85
Table 6.14 C2-based POP production by ExxonMobil’s solution process—Production costs 87
Table 7.1 C3-Based POE production by ExxonMobil’s solution process—Design bases 90
Table 7.2 C3-based POE production by ExxonMobil’s solution process—Major stream flows 91
Table 7.3 C3-based POE production by ExxonMobil’s solution process—Major equipment 94
Table 7.4 C3-based POE production by ExxonMobil’s solution process—Utilities summary 96
Table 7.5 Process conditions to produce different polymers with metallocene catalysts 98
Table 7.6 Process conditions for design 98
Table 7.7 Summary of major waste streams 100
Table 7.8 Carbon dioxide emission and water consumption 100
Table 7.9 C3-based POE production by ExxonMobil’s solution process—Total capital investment 103
Table 7.10 C3-based POE production by ExxonMobil’s solution process—Capital investment by section 104
Table 7.11 C3-based POE production by ExxonMobil’s solution process—Production costs 106

Figures

Figure 1.1 Thermoplastic elastomer 8
Figure 2.1 Simplified flow diagram of Dow Chemical’s Dowlex™ PE loop solution process 14
Figure 2.2 INSITE™ catalyst for C2 POE/POP production 15
Figure 2.3 Pyridyl-amido catalysts for VERSIFY™ C3 POE production 15
Figure 2.4 Simplified flow diagram of ExxonMobil’s CSTR solution process 16
Figure 2.5 Dimethylsilyl bis(indenyl) hafnium dimethyl 16
Figure 4.1 Simplified flow diagram of Dow Chemical’s Dowlex™ PE CSTR solution process 32
Figure 4.2 Simplified flow diagram of Dow Chemical’s Dowlex™ PE loop solution process 33
Figure 4.3 (2,3,4,5-Tetramethylcyclopentadienyl dimethyl silyl tert-butyl amido) titanium(IV) dimethyl 34
Figure 4.4 (2,3,4,5-Tetramethylcyclopentadienyl dimethyl silyl tert-butyl amido) titanium(II) 1,3-pentadiene 35
Figure 4.5 Pyridyl-amido catalysts for VERSIFY™ C3 POE 35
Figure 4.6 Simplified flow diagram of ExxonMobil’s CSTR solution process 37
Figure 4.7 Pressure-temperature profile for ExxonMobil solution process 38
Figure 4.8 Dimethylsilyl bis(indenyl) hafnium dimethyl 40
Figure 4.9 Dimethylanilinium tetrakis (pentafluorophenyl) borate NCA 40
Figure 4.10 Simplified flow diagram of Mitsui’s CSTR solution process 41
Figure 4.11 Simplified flow diagram of Borealis’ Borceed PE process 42
Figure 4.12 Simplified flow diagram of SK Innovation’s Nexlene™ process 43
Figure 5.1 (2,3,4,5-Tetramethylcyclopentadienyl dimethyl silyl tert-butyl amido) titanium(II) 1,3-pentadiene 55
Appendix D Figures

Figure 5.1 (Sheet 1 of 3) C2-Based POE/POP Production by Dowlex Solution loop process using Loop Polymerization Reactors 122
Figure 5.1 (Sheet 2 of 3) C2-Based POE/POP Production by Dowlex Solution loop process using Loop Polymerization Reactors 123
Figure 5.1 (Sheet 3 of 3) C2-Based POE/POP Production by Dowlex Solution loop process using Loop Polymerization Reactors 124
Figure 6.1 (Sheet 1 of 3) C2-Based POE/POP Production by ExxonMobil Solution process 125
Figure 6.1 (Sheet 2 of 3) C2-Based POE/POP Production by ExxonMobil Solution process 126
Figure 6.1 (Sheet 3 of 3) C2-Based POE/POP Production by ExxonMobil Solution process 127
Figure 7.1 (Sheet 1 of 3) C3-Based POE Production by ExxonMobil Solution process 128
Figure 7.1 (Sheet 2 of 3) C3-Based POE Production by ExxonMobil Solution process 129
Figure 7.1 (Sheet 3 of 3) C3-Based POE Production by ExxonMobil Solution process 130
IHS Markit Customer Care:

CustomerCare@ihsmarkit.com
Americas: +1 800 IHS CARE (+1 800 447 2273)
Europe, Middle East, and Africa: +44 (0) 1344 328 300
Asia and the Pacific Rim: +604 291 3600