

Crude Oil to p-Xylene

Zhejiang Refinery-PX Complex (Phase 1)

PEP Report 303A

October 2019

Soumitro Nagpal

Executive Technical Director

Rajesh Verma

Associate Director

Michael Arné

Director of Emerging Technologies

Rajiv Narang

Executive Director

R.J. Chang

Vice President, Process Economics Program

Process Economics Program

PEP Report 303A

Crude Oil to p-Xylene—Zhejiang Refinery-PX Complex (Phase 1)

Soumitro Nagpal, Executive Technical Director
Rajesh Verma, Associate Director
Rajiv Narang, Executive Director
Michael Arné, Director of Emerging Technologies
R.J. Chang, Vice President, Process Economics Program

Abstract

Refinery based crude oil-to-chemicals (COTC) technology involves configuring a refinery to produce maximum chemicals instead of traditional transportation fuels. COTC complexes elevate petrochemical production to an unprecedented refinery scale. Due to the huge scale as well as the amount of target chemicals each COTC complex produces, COTC technology is expected to be disruptive, in terms of abrupt supply increase and price fluctuation, to the global petrochemical industry when each project starts. COTC is happening now with three refinery-PX projects, Hengli (Dalian, China), Zhejiang Phase 1(Zhejiang China), and Hengyi (Brunei) starting in 2019.

Hengli announced on May 17, 2019 that its COTC refinery-PX complex had achieved full line trial production. The complex is expected to produce 4.34 million tons of PX (paraxylene) per year, in addition to 3.9 million tons of other chemicals. The total chemical conversion per barrel of oil is estimated to be 42%. Hengli's configuration is mainly based on hydrocracking of diesel, gas oil, and vacuum residue with technologies licensed from Axens. PEP Report 303, published in December 2018, analyzed Hengli Petrochemical's refinery-PX complex, provided PEP's independent analysis of the process configuration and production economics.

Zhejiang Petroleum and Chemical (ZPC) Co.'s COTC refinery-PX project has two phases. Phase 1 is close to completion with several units in the intial trial operation. During the recent visit by IHS Markit on May 23, 2019 to Rongsheng, the majority share holder of ZPC, said that full operation is expected in the third quarter of 2019. When completed, Phase 1 is expected to produce 4.0 million tons of PX, 1.5 million tons of benzene, 1.4 million tons of ethylene, and other downstream petrochemicals. The total chemical conversion per barrel of oil is about 45%.

ZPC's configuration is mainly based on diesel hydrocracking with technology licensed from Chevron and gasoil hydrocracking with technology licensed from UOP. For vacuum residue upgradation, ZPC uses Delayed Coking (open art) and Residue Desulfurization followed by Residue Fluid Catalytic Cracking (RFCC) licensed from UOP. The Phase 2 project construction has also started, and when completed it will have a similar scale to Phase 1. However, the Phase 2 refinery configuration will be further enhanced by UOP to produce more mixed feeds to support two word-scale steam crackers as compared to one cracker for Phase 1. The total chemical conversion has been announced to increase to 50%, up from 45% in Phase 1. The number of downstream petrochemical units is also expected to differ from Phase 1.

The objective of this report (PEP 303A) is to analyze ZPC's Phase 1 refinery-PX complex. Although Zhejiang Phase 1 project, as announced, includes a steam cracker and fifteen downstream

petrochemical units, PEP 303A analysis will draw a boundary before steam cracker to focus on PX production economics to be compared to that of Hengli's complex.

Section 1 introduces various crude oil-to-chemicals (COTC) approaches including directly feeding a light crude to steam cracker and configuring a refinery to produce maximum chemicals. In this section, we have discussed the merits and impacts of each approach, and why COTC is different from the conventional state-of-art refinery-petrochemical integration. We have elaborated the potential impact and implications of COTC on global petrochemical production.

Section 2 summarizes the overall PX production economics of Zhejiang Phase 1 refinery-PX complex. The economics are evaluated under a wide range of oil price scenarios and compared with Hengli's project.

Section 3 provides a status update of all announced COTC projects with emphasis on ZPC's project progress and Phase 1 as well as Phase 2 main process units and technology choices. We also discuss the market impact of PX focused COTC projects that are expected to start operation this year on future supply along with demand in China and around the globe.

Section 4 provides technology overview and process description of all ZPC-1 refinery process units.

Section 5 presents ZPC-1 refinery production economics of each individual unit, and for the major process blocks in the complex.

Section 6 presents the overall complex process economics and an investment return (ROI) sensitivity analysis.

Contents

1	Introduction	14
	Objective within refinery	17
	Crude oil barrel to chemical conversion percentage	18
	Scale of chemical production	19
	COTC to change the global competitive landscape	20
2	Summary	22
	ZPC COTC refinery-PX Project (Phase 1)	22
	Cost estimates	24
	Capital cost	24
	Production cost	24
	Sensitivity	24
	Conclusions	25
3	Industry overview	26
	Status of major COTC projects by refinery reconfiguration	26
	Hengli refinery-PX complex	26
	Zhejiang Petroleum & Chemical petrochemical complex	31
	Hengyi (Brunei) PMB refinery and integrated petrochemical complex	36
	Shenghong Petrochemical complex	38
	Aramco/SABIC joint venture	38
	Aramco's future COTC technologies	39
	COTC's impact on PX market	39
4	Technology review	45
	Crude distillation Crude distillation unit (CDU)	48 48
	Vacuum distillation unit (VDU)	51
	Light hydrocarbon recovery	51
	Delayed coker	54
	Coker gas plant operation	56
	Residue hydrodesulfurization	58
	Gasoil hydrocracking	61
	Diesel hydrocracking	66
	Resid Fluid Catalytic Cracking (RFCC)	74
	ZPC RFCC process description	78
	Reaction and regeneration	78
	Fractionation and separation	79
	Flue gas DeNOx and desulfurization	81
	RFCC cracked gasoline hydrotreating	82
	Light gasoline etherification	86
	Jet fuel purification	90
	Naphtha hydrotreating unit	93
	Continuous catalytic reforming (CCR)	96
	Process flow description	102
	Reforming reaction section	103
	Reformer re-contacting section	105
	Pentane and butane removal section	106
	Catalyst regeneration section	108
	Chloride removal	109
	NOx removal	109
	Aromatics	111

Xylene fractionation section	111
BTX aromatics separation section	113
Process flow description	116
Benzene-toluene separation section	118
p-Xylene recovery section	119
Process flow description	121
Xylene isomerization section	123
Process flow description	125
C ₇ aromatics and C ₉ aromatics transalkylation section	126
Process flow description	129
Unsaturated C ₃ /C ₄ Separation	130
Saturated C ₃ /C ₄ separation	133
MTBE process	135
Alkylation	137
C₅ Separation	144
C ₁ /C ₂ (saturated and unsaturated) separation	146
Combined dry gas sulfur removal	150
Saturated LPG sulfur and mercaptan removal	155
Caustic liquid regeneration	156
Sulfur recovery	157
Sour Water Stripping (SWS)	162
Amine regeneration	164
Sulfur Recovery Unit (SRU)	165
Coal and coke gasification to produce hydrogen	167
Gasification	171
Shift reaction	173
Purification	175
Hydrogen purification	177
Complex hydrogen balance	178
Zhejiang complex feed and products summary	179
CO ₂ footprint	179
Process economics	180
Crude distillation	180
Light hydrocarbon recovery	181
Delayed coker	182
Residue hydrodesulfurization	183
Gasoil hydrocracking	183
Diesel hydrocracking	184
Resid fluid catalytic cracking (RFCC)	185
RFCC gasoline hydrotreating	186
Light gasoline etherification	187
Jet fuel purification	187
Naphtha hydrotreating unit	188
Continuous catalytic reforming (CCR)	189
Aromatics	190
Unsaturated gas C ₃ /C ₄ separation	191
Saturated C ₃ /C ₄ separation	191
MTBE process	192
Alkylation	193
C ₅ separation	193
C ₁ /C ₂ (saturated and unsaturated) separation	194
Combined dry gas sulfur removal	194
Sulfur recovery	195
Coal and petcoke gasification to produce hydrogen	196

5

	Utility consumptions	198
	ISBL capex	198
	OSBL capex	198
	Catalyst and chemicals	201
6	Overall complex economics and scenario analysis	203
	Capital costs	203
	Production costs	205
	Sensitivity	205
	Comparison with Hengli COTC	209

Tables

Table 2.1 Zhejiang COTC refinery-PX complex feed and product summary	23
Table 3.1 Refinery based COTC projects	26
Table 3.2 Hengli's refinery-PX complex process economics	29
Table 3.3 Zhejiang Petroleum & Chemical complex refinery units	32
Table 3.4 Zhejiang Petroleum & Chemical complex petrochemical units	34
Table 4.1 Zhejiang Petroleum & Chemical complex refinery units	45
Table 4.2 Zhejiang Petroleum & Chemical complex petrochemical units	46
Table 4.3 Crude oil characteristics	48
Table 4.4 Train 1 crude oil characteristics	49
Table 4.5 Train 2 crude oil characteristics	49
Table 4.6 CDU/VDU product yields for Train 1 + Train 2	50
Table 4.7 Feeds to light hydrocarbon recovery	52
Table 4.8 Products of light hydrocarbon recovery	52
Table 4.9 Product specifications	52
Table 4.10 Feeds to the delayed coker	55
Table 4.11 Specifications of the feeds for the delayed coker unit	55
Table 4.12 Products from delayed coker	55
Table 4.13 Specifications of the petroleum coke	55
Table 4.14 Feeds to the resid hydrodesulfurization unit	58
Table 4.15 Properties of mixed feed	59
Table 4.16 Products from residue hydrodesulfurization process	59
Table 4.17 Products specifications for residue hydrodesulfurization process	60
Table 4.18 Feeds for the gasoil hydrocracking unit	62
Table 4.19 Hydrogen specifications	62
Table 4.20 Products from gasoil hydrocracking process	63
Table 4.21 Composition of cracked LPG	63
Table 4.22 Specifications of heavy naphtha	64
Table 4.23 Specifications of jet fuel	64
Table 4.24 Specifications of diesel	64
Table 4.25 Feeds to diesel hydrocracking #1 unit	67
Table 4.26 Diesel feed properties	67
Table 4.27 Feed and source of diesel hydrocracking unit #2	68
Table 4.28 Diesel hydrocracking #2 heavy naphtha specifications	68
Table 4.29 Hydrotreated coker naphtha specification	68
Table 4.30 Products of diesel hydrocracking unit #1	69
Table 4.31 Products of diesel hydrocracking unit #2	69
Table 4.32 Diesel hydrocracking rich amine solvent specification	70
Table 4.33 Diesel hydrocracking dry gas composition	70
Table 4.34 Diesel hydrocracking LPG composition	70
Table 4.35 Diesel hydrocracking light and heavy naphtha specifications	71
Table 4.36 Diesel hydrocracking jet fuel specifications	71
Table 4.37 Diesel hydrocracking diesel specification	72
Table 4.38 Diesel hydrocracking hydrogenated coker naphtha specification	72
Table 4.39 Feed provided to the RFCC unit	74
Table 4.40 RFCC products and where-to	75
Table 4.41 RFCC specifications of gasoline and diesel	75
Table 4.42 RFCC dry gas and LPG specifications	76
Table 4.43 RFCC slurry oil specifications	76
Table 4.44 RFCC catalytic gasoline hydrotreating unit feeds and products	82
Table 4.45 Desulfurized light and heavy gasoline specifications	83
Table 4.46 Rich amine solvent composition	83
Table 4.47 Dry gas specifications	83
Table 4.48 Catalytic gasoline etherification unit—Feeds and products	87
Table 4.49 Feed methanol specifications	87

Table 4.50 Specifications of etherized gasoline	87
Table 4.51 Jet fuel purification unit feeds and products	90
Table 4.52 Straight run and hydrotreated-jet fuel specifications	91
Table 4.53 Dry gas product composition	91
Table 4.54 Naphtha hydrotreating unit feeds and products	93
Table 4.55 Feed naphtha specification	94
Table 4.56 Specification of hydrogenated light and heavy naphtha	94
Table 4.57 Specifications of hydrogenated heavy naphtha	95
Table 4.58 Inlet and outlet streams from CCR Unit 1 and 2	103
Table 4.59 CCR-1unit C₅+ reformate composition (PONA) in wt%	105
Table 4.60 CCR-1 and CCR-2 reforming hydrogen (net gas) typical composition	106
Table 4.61 CCR-1 and CCR-2 reformer LPG and C₅ oil typical composition	107
Table 4.62 Inlet and outlet streams from aromatics complex-1 and 2	113
Table 4.63 BTX extraction unit feed specifications	116
Table 4.64 PNA analysis of aromatics complex-1 raffinate stream	117
Table 4.65 Benzene product specifications	119
Table 4.66 p-Xylene product specifications	123
Table 4.67 Reaction controlling functions in transalkylation and disproportionation chemistries	128
Table 4.68 Feeds for the Unsat C ₃ /C ₄ separation unit	131
Table 4.69 Products obtained from unsat C ₃ /C ₄ separation unit	131
Table 4.70 Propylene product specification	131
Table 4.71 Propane product specification	132
Table 4.72 Mixed C ₄ product specifications	132
Table 4.73 Feeds for the Saturated C ₃ /C ₄ separation unit	134
Table 4.74 Products from Saturated C ₃ /C ₄ separation unit	134
Table 4.75 Specifications of propane from Saturated C ₃ /C ₄ separation unit	134
Table 4.76 MTBE unit feeds and products	135
Table 4.77 MTBE product specifications	136
Table 4.78 Feeds for the alkylation unit	138 139
Table 4.79 Specification of feeds provided to the alkylation unit	139
Table 4.80 Zhejiang COTC Phase 1 products from alkylation unit Table 4.81 Specifications of alkylate product	140
Table 4.82 Feeds and products of C ₅ separation unit.	144
Table 4.83 Specification of products from C₅ isomer separation unit	145
Table 4.84 Feeds to the C_1/C_2 separation unit.	146
Table 4.85 Products of the C_1/C_2 separation unit	146
Table 4.86 Specification of ethane rich ethylene gas from C ₁ /C ₂ separation unit	147
Table 4.87 Specification of ethane-rich gas from C ₁ /C ₂ separation unit	147
Table 4.88 Feeds to the dry gas/LPG combined desulfurization block	151
Table 4.89 Products from the dry gas/LPG combined desulfurization block	151
Table 4.90 Specification of purified dry gas from combined desulfurization block	152
Table 4.91 Specification of purified unsaturated LPG	153
Table 4.92 Specification of saturated LPG from combined desulfurization block	153
Table 4.93 Feeds to the sour water stripping unit	158
Table 4.94 Feeds for the amine regeneration	159
Table 4.95 SRU feed sour gas streams	160
Table 4.96 Products from the sulfur recovery unit (SRU)	160
Table 4.97 Product sulfur specification	160
Table 4.98 Lean solvent specification	161
Table 4.99 capacity and products of coal/coke gasification unit	167
Table 4.100 Specification of coal feed to the coal/coke gasification unit	168
Table 4.101 Hydrogen specifications	170
Table 4.102 Fuel gas specification	170
Table 4.103 Zhejiang COTC refinery overall hydrogen balance	178
Table 4.104 Zhejiang COTC refinery feed and product summary	179
Table 4.105 Zhejiang COTC refinery CO2 footprint	179
Table 5.1 ISBL capex for crude and vacuum distillation	181

Table 5.2 ZPC COTC refinery phase 1 utility consumptions	199
Table 5.3 ZPC COTC refinery phase 1 overall ISBL capex estimation	200
Table 5.4 ZPC COTC refinery phase 1 OSBL investment	201
Table 6.1 Total capital investment	204
Table 6.2 Zhejiang crude to p-Xylene complex production economics	207
Table 6.2 Zhejiang crude to p-Xylene complex production economics (concluded)	208
Table 6.3 Comparison of Zhejiang COTC with Hengli COTC	210

Figures

Figure 1.1 Crude oil-to-chemical routes	14
Figure 1.2 Categories of refinery-petrochemical integration.	15
Figure 1.3 ExxonMobil crude oil-to-steam cracking process schematic	16
Figure 1.4 Schematic representation of refinery-petrochemical integration	17
Figure 1.5 Merging a refinery and a petrochemical plant into a COTC plant	18
Figure 1.6 Refinery product yields	18
Figure 1.7 World PX plant capacity rank	19
Figure 1.8 Future competitive factors	20
Figure 3.1 Hengli's refinery-PX complex configuration	26
Figure 3.2 Hengli's ParamaX® aromatics production process	28
Figure 3.3 Hengli's refinery-PX complex product yields	28
Figure 3.4 Hengli's refinery-PX complex—start of trial operation on December 15, 2018	
construction progress	31
Figure 3.5 Zhejiang's refinery-PX complex—construction as of October 19, 2018	36
Figure 3.6 Hengyi (Brunei) PMB project	37
Figure 3.7 Shenghong project—start of construction.	38
Figure 3.8 PX demand versus capacity in China	40
Figure 3.9 World PX supply and demand	41
Figure 3.10 World 2018 PX demand by region	41
Figure 3.11 World 2023 PX demand by region	42
Figure 3.12 Northeast Asia 2018 PX demand by country	42
Figure 3.13 Northeast Asia 2023 PX demand by country	43
Figure 3.14 China PX imports by source in 2018	43
Figure 3.15 China PX imports by source in 2018	43
	51
Figure 4.1 Zhejiang crude and vacuum distillation process flow diagram (Train 1)	53
Figure 4.2 Zhejiang light hydrocarbon recovery flow diagram	56
Figure 4.3 Zhejiang delayed coking process flow diagram	
Figure 4.4 Zhejiang residue desulfurization process flow diagram	60
Figure 4.5 Zhejiang Gasoil hydrocracking process flow scheme (simplified)	65
Figure 4.6 Zhejiang diesel hydrocracking process flow diagram	73
Figure 4.7 RFCC process flow —reaction and regeneration section	77
Figure 4.8 RFCC process flow—fractionation and separation section	79
Figure 4.9 RFCC process flow—NOx removal section	80
Figure 4.10 RFCC process flow—Flue gas desulfurization	81
Figure 4.11 RFCC gasoline hydrotreating process flow—Selective hydrogenation	84
Figure 4.12 RFCC gasoline hydrotreating process flow—Heavy gasoline hydrodesulfurization	85
Figure 4.13 RFCC gasoline hydrotreating process flow—Heavy gasoline stabilizer	86
Figure 4.14 Gasoline etherification process flow—Reaction section	88
Figure 4.15 Gasoline etherification process flow—Methanol recovery	88
Figure 4.16 Jet fuel hydrotreating process flow scheme—Reactor / Separator	92
Figure 4.17 Jet fuel hydrotreating process flow scheme—Stabilizer	92
Figure 4.18 Zhejiang naphtha hydrogenation process flow scheme	95
Figure 4.19 Reforming reactions typical pathway	98
Figure 4.20 Typical radial flow reactor	100
Figure 4.21Typical CCR catalyst regenerator arrangement	101
Figure 4.22 CCR reforming section process schematic	104
Figure 4.23 Reformer re-contacting section process schematic	106
Figure 4.24 Pentane and butane removal section process schematic	107
Figure 4.25 CCR catalyst regenerator section process schematic	108
Figure 4.26 NOx removal by selective catalytic reduction (SCR)	110
Figure 4.27 Xylene fractionation section process schematic	112
Figure 4.28 Typical P, N, A flow within a sulfolane solvent extraction column	115
Figure 4.29 BTX aromatics extraction section process schematic	117
Figure 4.30 Benzene-toluene fractionation section process schematic	118

Figure 4.31 Comparison of p-Xylene adsorption and p-Xylene crystallization process in a typical	
aromatics complex	120
Figure 4.32 p-Xylene adsorption section process schematic	122
Figure 4.33 Xylene isomerization section process schematic	126
Figure 4.34 Aromatics equilibrium distribution	127
Figure 4.35 C ₇ and C ₉ aromatics transalkylation section process schematic	130
Figure 4.36 Unsat gas C ₃ /C ₄ separation process flow scheme	133
Figure 4.37 Saturated C ₃ /C ₄ separation process flow scheme	135
Figure 4.38 Zhejiang MTBE production process flow scheme	136
Figure 4.39 Zhejiang alkylation process flow scheme	140
Figure 4.40 Sulfuric acid regeneration (SAR) process flow scheme	141
Figure 4.41 Zhejiang normal C ₅ and <i>iso</i> -C ₅ separation flow scheme	145
Figure 4.42 C ₁ /C ₂ separation process flow scheme for unsaturated gas	148
Figure 4.43 Zhejiang C ₁ /C ₂ saturated gas separation flow scheme	149
Figure 4.44 Zhejiang dry gas desulfurization flow scheme	154
Figure 4.45 LPG desulfurization and mercaptan removal flow scheme	155
Figure 4.46 Caustic liquid regeneration flow scheme	156
Figure 4.47 SWS flow scheme (non-hydroprocessing unit feed source)	162
Figure 4.48 SWS flow scheme (sour water from hydroprocessing units)	163
Figure 4.49 Amine regeneration process flow scheme	164
Figure 4.50 SRU claus section process flow scheme	165
Figure 4.51 Tail gas treatment flow scheme	166
Figure 4.52 Coal/petcoke gasification flow scheme	172
Figure 4.53 Coal gasification syngas shift reaction flow scheme	174
Figure 4.54 Syngas purification flow scheme	175
Figure 5.1 Crude and vacuum distillation feed/product slate and utility summary	181
Figure 5.2 Light hydrocarbon recovery feed/product slate and utility summary	182
Figure 5.3 Delayed coking feed/product slate and utility summary	182
Figure 5.4 Residue hydrodesulfurization feed/product slate and utility summary	183
Figure 5.5 Gasoil hydrocracking feed/product slate and utility summary	184
Figure 5.6 Diesel hydrocracking feed/product slate and utility summary	185
Figure 5.7 Resid FCC feed/product slate and utility summary	186 186
Figure 5.8 RFCC gasoline hydrotreating feed/product slate and utility summary Figure 5.9 Light gasoline etherification feed/product slate and utility summary	187
Figure 5.9 Light gasoline ethermication reed/product state and utility summary	188
Figure 5.11 Naphtha hydrotreating feed/product slate and utility summary	188
Figure 5.12 CCR #1 & 2 feed and product slate and utility summary	189
Figure 5.13 Aromatics unit #1 & 2 feed and product slate and utility summary	190
Figure 5.14 Unsat gas separation feed/product slate and utility summary	191
Figure 5.15 Saturated C ₃ /C ₄ separation feed/product slate and utility summary	192
Figure 5.16 MTBE unit feed/product slate and utility summary	192
Figure 5.17 Alkylation unit feed/product slate and utility summary	193
Figure 5.18 C ₅ separation unit feed/product slate and utility summary	194
Figure 5.19 C ₁ –C ₂ separation unit feed/product slate and utility summary	194
Figure 5.20 Dry gas and LPG desulfurization overall mass balance summary	195
Figure 5.21 Sulfur recovery unit overall mass balance summary	196
Figure 5.22 Coal and coke gasification feed/product slate and utility summary	197
Figure 5.23 ISBL capex distribution by refinery block	201
Figure 5.24 ZPC catalyst and chemicals consumption cost distribution	202
Figure 6.1 ZPC ROI sensitivity to feed and product prices plotted vs Arab Medium crude price at 5	
snapshots in time	206
Figure 6.2 <i>p</i> -Xylene, Benzene, and Arab Medium crude price 5-year trend	206
Figure 6.3 Comparison of Hengli and Zhejiang COTC ROI at various crude price snapshots	211
Figure 6.4 Comparison of Hengli and Zhejiang COTC ROI vs refining margins	212

Appendix C figures

Figure 2.1 ZPC COTC refinery phase 1 overview	218
Figure 2.2 ZPC COTC refinery phase 1 overall process configuration	219
Figure 2.2 ZPC COTC refinery phase 1 overall process configuration (continued)	220

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com
Americas: +1 800 IHS CARE (+1 800 447 2273)
Europe, Middle East, and Africa: +44 (0) 1344 328 300
Asia and the Pacific Rim: +604 291 3600

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit lows all IHS Markit lows and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "Information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the sites owners for their products/services.) Karkit is not responsible for either the content or output of external websites. Copyright © 2019, IHS Markit. All rights reserved and all intellectual property rights are retained by IHS Markit.

