

Chemical Recycling of PET

PEP Report 199D August 2019

Process Economics Program

PEP Report 199D

Chemical Recyling of PET

Susan Bell, Director of Polymer Processes

Abstract

Globally, approximately 21.6 million metric tons of bottle-grade polyethylene terephthalate (PET) was consumed in 2017. The PET bottle market has been growing globally, which naturally has led to a growing used PET bottle waste stream worldwide. To prevent mountains of PET bottles in landfills, recycling of used PET is desirable. A portion of the post-consumer PET waste is mechanically recycled. Some of the collected post-consumer PET have also been exported to China. However, with China's recent crackdown on imports of postconsumer plastics, there has been an urgent drive for innovation in plastic recycling. Chemical recycling (also referred to as feedstock recycling) of PET can be used to recover PET raw materials or produce new raw materials.

In this report, the industrial status of PET recycling will be presented. Various options for PET recycling will be discussed in the technology review with particular emphasis on chemical recycling of PET. New processes for chemical recycling of PET including Carbios (a fermentation process), Gr3n (microwave depolymerization), Garbo (glycolysis to bis(2-hydroxyethyl) terephthalate), Loop Industries (ambient condition depolymerization), and Ioniqa Technologies (glycolysis with an ionic liquid catalyst complex to bis(2-hydroxyethyl) terephthalate) will be examined. Existing commercial processes for chemical recycling of PET will also be reviewed. The process economics for chemical recycling of PET by 1. A glycolysis process using an ionic liquid catalyst complex, 2. Uhde Inventa-Fischer Flake to Resin (FTR[®]) partial glycolysis process and 3. Eastman methanolysis process are presented. This report will be of value to those companies engage in plastics production, particularly PET production, and major brand owners that utilize these plastic products.

Contents

1	Introduction	10
2	Summary	13
	Introduction	13
	Industrial aspects	13
	Technical aspects	15
	Chemical recycling overview	15
	Glycolysis	16
	Hydrolysis	16
	Methanolysis	17
	Economic aspects	17
	Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex	18
	Chemical recycling of PET using Uhde Inventa-Fischer Flake to Resin (FTR $^{ m s}$) process	21
	Chemical recycling of PET by a process similar to Eastman's methanolysis process	23
	Conclusion	27
3	Industry status	29
	Introduction	29
	Polyethylene terephthalate end use	29
	Polyethylene terephthalate supply and demand	31
	Polyethylene terephthalate producers	32
	Polyethylene terephthalate collection rates	34
	rPET end use	35
	rPET supply and demand	36
	Pricing	39
4	Technology	41
	Introduction	41
	PET chemistry	41
	Plastic recycling	44
	PET mechanical recycling	46
	PET chemical recycling	50
	Glycolysis	51
	Catalysts	52
	Companies	53
	Aquafil's EverPET®	53
	Cumapol's CuRe process	53
	Equipolymers' Veridis	54
	Garbo's ChemPET®	54
	IBM's VolCat® Process	54
	Ioniqa Technologies' Magnetic Smart Materials and Separation Process	55
	perPETual chemical recycling process (PCRP)	57
	PET Refine Technology's polyester recycling process	59
	Resinate [®] materials group Recycolysis™ process	60
	Sabic's post-consumer PET upcycle process	60
	Teijin Fibers' ECO-CIRCLE® process	61
	Uhde Inventa-Fischer (UIF) Flake-to-Resin (FTR®) process	61
	Hydrolysis	63
	CARBIOS' enzymatic depolymerization of PET	65
	Gr3n's DEMETO	66
	Methanolysis	68
	DuPont's polyester regeneration technology	69

	Eastman Kodak's methanolysis process	69
	Eastman's methanolysis process Loop Industries' depolymerization process	70 74
	Mitsubishi Heavy Industries' chemical recycling process	74
5	Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst com	
.	Introduction	78
	Process description	78
	Section 100—Feed preparation	85
	Section 200—Depolymerization	85
	Section 300—Product recovery and purification	85
	Process discussion	86
	Plant design capacity	86
	Onstream factor	86
	Recycled PET feedstock	86
	Catalyst complex	86
	Depolymerization	87
	Catalyst complex recovery	88
	Product recovery	88
	Material of construction	89
	Waste treatment	89
	Cost estimate for chemical recycling of PET	89
	Capital costs	89
	Production costs	94
	Ionic liquid catalyst complex cost estimation	95
	PET cost estimation using feedstock from chemical recycling of post-consumer PET	101
6	Chemical recycling of PET using Uhde Inventa-Fischer Flake to Resin (FTR [®]) process	105
	Introduction	105
	Process description	105
	Off-sites	110
	Section 100—Esterification and pre-polycondensation	110
	Section 200—Polycondensation section	112
	Section 300—FTR [®] recycling	112
	Process discussion	112
	Plant design capacity	112
	Onstream factor	113
	Recycled PET feedstock	113
	MTR [®] process	113
	FTR [®] process	113
	Material of construction	113
	Waste treatment	114
	Cost estimates	114
	Capital costs	114
	Bottle-grade PET (IV 0.82 dL/g, 30% recycled content) production costs	119
	Comparison of process economics of bottle-grade PET (IV 0.82 dL/g, 30% recycled content)	with
	virgin bottle-grade PET production	122
7	Chemical recycling of PET by a process similar to Eastman's methanolysis process	124
	Introduction	124
	Process description	124
	Section 100—Feed preparation	132
	Section 200—Depolymerization	132
	Section 300—Product recovery and purification	132
	Process discussion	133
	Plant design capacity	133
	Onstream factor	133
	Recycled PET feedstock	133
	Depolymerization	133

Product recovery and purification	134
Material of construction	135
Waste treatment	135
Cost estimates	136
Capital costs	136
Production costs	140
DMT price	142
DMT as a feedstock to CHDM	143
APPENDIX A—Patent summaries	146
APPENDIX B—Design and cost basis	153
APPENDIX C—Cited references	159
APPENDIX D—Patent references by company	167
APPENDIX E—Process flow diagrams	170

Tables

Table 2.1 Summary of several companies with glycolysis processes Table 2.2 Summary of companies with hydrolysis processes Table 2.3 Summary of several companies with methanolysis processes Table 2.4 Capital estimate for PET production plant with integrated PET chemical recycling unit Table 2.5 PET production costs	16 17 17 19 20
Table 2.6 Capital estimate for PET plant with an integrated PET chemical recycling FTR [®] unit Table 2.7 Production costs for PET plant with an integrated PET chemical recycling FTR [®] unit Table 2.8 Process economics for chemical recycling of PET by a process similar to Eastman's	22 23
methanolysis process Table 2.9 Estimated product values of CHDM and specialty copolyesters based on recycled feedstock Table 3.1 IV of PET resin by application Table 3.2 Leading global producers of PET melt-phase resins (2019) Table 3.3 Leading global producers of PET bottle resins (2019) Table 3.4 United States post-consumer PET bottle flow—2019 Table 3.5 United States PET prices Table 4.1 Typical composition of PTA Table 4.2 Typical specification of polyester grade EG Table 4.3 PET model bale specification Table 4.4 Minimum requirements for rPET for BtoB Table 4.5 Commercial Uhde Inventa Fischer's Flake-To-Resin plants Table 4.6 Comparison of reaction times using microwave	25 27 30 32 33 35 39 42 42 45 47 63 64
Table 4.7 Commercial specialty copolyesters containing CHDMTable 4.8 Comparison of Loop's Generation I and Generation II processTable 5.1 Chemical recycling of PET by a glycolysis process using an ionic liquid catalyst	74 76
complex—Design bases Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows	79 80
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (continued)	80
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (continued)	81
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (continued)	81
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (concluded)	82
Table 5.3 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major equipment	82
Table 5.3 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major equipment (continued)	83
Table 5.3 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major equipment (continued)	84
Table 5.4 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Utilities summaryTable 5.5 Patent example 1 (WO 2016105200)Table 5.6 Summary of major waste streams	84 87 89
Table 5.7 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Total capital investment	92
Table 5.8 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Capital investment by section	93
Table 5.9 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Production costs	94
 Table 5.9 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Production costs (concluded) Table 5.10 Ionic liquid catalyst complex—Major stream flows Table 5.10 Ionic liquid catalyst complete—Major stream flows (concluded) 	95 96 97

Table 5.11 Ionic liquid catalyst complex—Major equipment Table 5.12 Ionic liquid catalyst complex—Production costs Table 5.12 Ionic liquid catalyst complex— Production costs (concluded)	98 99 100
Table 5.13 Capital estimate for PET production plant with integrated PET chemical recycling unit Table 5.14 PET production costs Table 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated	102 103
plant by UIF Melt-to-Resin process and Flake-to-Resin process—Design bases	106
 Table 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Design bases (continued) Table 6.2 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated 	107
plant by UIF Melt-to-Resin process and Flake-to-Resin process—Major stream flows	107
Table 6.2 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated p	
by UIF Melt-to-Resin process and Flake-to-Resin process—Major stream flows (continued)	108
Table 6.3 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated p by UIF Melt-to-Resin process and Flake-to-Resin process—Section 300 major equipment Table 6.4 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated	lant 109
plant by UIF Melt-to-Resin process and Flake-to-Resin process—Utilities summary	110
Table 6.5 Summary of major waste streams	114
Table 6.6 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated	
plant by UIF Melt-to-Resin process and Flake-to-Resin process—Total capital investment	116
Table 6.7 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated p	
by UIF Melt-to-Resin process and Flake-to-Resin process—Capital investment by section	117
Table 6.7 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated	
plant by UIF Melt-to-Resin process and Flake-to-Resin process—Capital investment by section	110
(concluded) Table 6.8 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated	118
plant by UIF Melt-to-Resin process and Flake-to-Resin process—Production in an integrated	120
Table 6.8 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated p	
by UIF Melt-to-Resin process and Flake-to-Resin process—Production costs (concluded)	121
Table 6.9 Capital estimate for PET production plant with integrated PET chemical recycling unit	122
Table 6.10 PET production costs	123
Table 7.1 Chemical recycling of PET by a process similar to Eastman's methanolysis process— Design bases	125
Table 7.2 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	
Major stream flows	126
Table 7.2 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	
Major stream flows (continued)	126
Table 7.2 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	107
Major stream flows (continued) Table 7.2 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	127
Major stream flows (continued)	127
Table 7.4 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	1 2 1
Utilities summary	131
Table 7.5 Summary of major waste streams	135
Table 7.6 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	
Total capital investment	138
Table 7.7 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	
Capital investment by section	139
Table 7.8 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	140
Production costs Table 7.8 Chemical recycling of PET by a process similar to Eastman's methanolysis process—	140
Production costs (concluded)	141
Table 7.9 Estimated product values of CHDM and specialty copolyesters based on recycled feedstoo	k 145

Figures

Figure 1.1 Plastic recycling flow Figure 1.2 Chemical recycling of PET Figure 2.1 Chemical recycling of PET	10 11 15
Figure 2.2 Block flow diagram of chemical recycling of PET by the glycolysis process using an ionic	10
liquid catalyst complex	18
Figure 2.3 Block flow diagram of PET production plant with integrated PET chemical recycling unit	19
Figure 2.4 Uhde Inventa Fischer's Flake-To-Resin process	21
Figure 2.5 Block flow diagram of Eastman's methanolysis process	24
Figure 2.6 Effect of post-consumer PET bale price on DMT product value	26
Figure 3.1 PET melt resin end use	29
Figure 3.2 PET bottle-grade resin end use—2019	30
Figure 3.3 Global PET end-use trend	31
Figure 3.4 Global PET operating rate	32
Figure 3.5 rPET end use for 2019 United States	36
Figure 3.6 World production of recycled PET solid-state resins by region (year 2018–24 forecast)	37
Figure 3.7 World production of PET solid-state resins by region (year 2018–24 forecast)	37
Figure 3.8 Historic PET pricing (United States)	40
Figure 4.1 Structure of polyethylene terephthalate (PET)	41
Figure 4.2 Polymer recycling categories	45
Figure 4.3 Chemical recycling of PET	50
Figure 4.4 Glycolysis of PET with EG	52
Figure 4.5 Equipolymers post-consumer Viridis PET chemical recycling process	54
Figure 4.6 Iron oxide (Fe3O4) nanoparticles functionalized with an ionic liquid catalyst	56
Figure 4.7 Ioniqa's post-consumer PET chemical recycling process	57
Figure 4.8 perPETual Chemical recycling process	59
Figure 4.9 Sabic's post-consumer PET upcycle process	60
Figure 4.10 Teijin Fibers' ECO-CIRCLE [®] process	61
Figure 4.11 Uhde Inventa Fischer's Flake-To-Resin process	62
Figure 4.12 Hydrolysis of PET with NaOH	63
Figure 4.13 Hydrolysis of PET with sulfuric acid	64
Figure 4.14 Carbios' enzymatic PET depolymerization process	66
Figure 4.15 DEMETO process	67
Figure 4.16 Methanolysis of PET with methanol	68 70
Figure 4.17 Eastman Kodak's methanolysis process to recycle x-ray films	70
Figure 4.18 Eastman's PET chemical recycling methanolysis process Figure 4.19 Loop Industries' Generation I depolymerization process	75
Figure 4.20 Loop's Generation II depolymerization process	76
Figure 4.20 Loop's Generation in depolymentation process Figure 4.21 Mitsubishi Heavy Industries' PET chemical recycling process	70
Figure 5.3 Block flow diagram of PET production plant with integrated PET chemical recycling unit	101
Figure 5.4 Effect of post-consumer PET bale price on PET product value	104
Figure 7.1 Effect of post-consumer PET bale price on DMT product value	142
Figure 7.3 Dimethyl terephthalate price	142
Figure 7.4 Dimethyl terephthalate annual production capacity by region	143
Figure 5.1 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst	145
complex (1 of 2)	171
Figure 5.1 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst	171
complex (2 of 2)	172
Figure 5.2 Catalyst complex synthesis	173
Figure 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated	170
plant by UIF Melt-to-Resin process and Flake-to-Resin process (1 of 2)	174
Figure 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated	11-1
plant by UIF Melt-to-Resin process and Flake-to-Resin process (2 of 2)	175
Figure 7.1 Chemical recycling of PET by a process similar to Eastman's methanolysis process (1 of 2	
Figure 7.1 Chemical recycling of PET by a process similar to Eastman's methanolysis process (2 of 2	

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ltd, or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit News all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit™. All rights reserved and all intellectual property rights are retained by IHS Markit." All rights meant or output of external websites. Copyright © 2019, IHS Markit™. All rights reserved and all intellectual property rights are retained by IHS Markit.

