Abstract

Globally, approximately 21.6 million metric tons of bottle-grade polyethylene terephthalate (PET) was consumed in 2017. The PET bottle market has been growing globally, which naturally has led to a growing used PET bottle waste stream worldwide. To prevent mountains of PET bottles in landfills, recycling of used PET is desirable. A portion of the post-consumer PET waste is mechanically recycled. Some of the collected post-consumer PET have also been exported to China. However, with China’s recent crackdown on imports of postconsumer plastics, there has been an urgent drive for innovation in plastic recycling. Chemical recycling (also referred to as feedstock recycling) of PET can be used to recover PET raw materials or produce new raw materials.

In this report, the industrial status of PET recycling will be presented. Various options for PET recycling will be discussed in the technology review with particular emphasis on chemical recycling of PET. New processes for chemical recycling of PET including Carbios (a fermentation process), Gr3n (microwave depolymerization), Garbo (glycolysis to bis(2-hydroxyethyl) terephthalate), Loop Industries (ambient condition depolymerization), and Ioniqa Technologies (glycolysis with an ionic liquid catalyst complex to bis(2-hydroxyethyl) terephthalate) will be examined. Existing commercial processes for chemical recycling of PET will also be reviewed. The process economics for chemical recycling of PET by 1. A glycolysis process using an ionic liquid catalyst complex, 2. Uhde Inventa-Fischer Flake to Resin (FTR®) partial glycolysis process and 3. Eastman methanolysis process are presented. This report will be of value to those companies engage in plastics production, particularly PET production, and major brand owners that utilize these plastic products.
Contents

1. **Introduction** 10
2. **Summary** 13
 - Introduction 13
 - Industrial aspects 15
 - Technical aspects 15
 - Chemical recycling overview 16
 - Glycolysis 16
 - Hydrolysis 16
 - Methanolysis 17
 - Economic aspects 17
 - Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex 18
 - Chemical recycling of PET using Uhde Inventa-Fischer Flake to Resin (FTR®) process 21
 - Chemical recycling of PET by a process similar to Eastman’s methanolysis process 23
 - Conclusion 27

3. **Industry status** 29
 - Introduction 29
 - Polyethylene terephthalate end use 29
 - Polyethylene terephthalate supply and demand 31
 - Polyethylene terephthalate producers 32
 - Polyethylene terephthalate collection rates 34
 - rPET end use 35
 - rPET supply and demand 36
 - Pricing 39

4. **Technology** 41
 - Introduction 41
 - PET chemistry 41
 - Plastic recycling 44
 - PET mechanical recycling 46
 - PET chemical recycling 50
 - Glycolysis 51
 - Catalysts 52
 - Companies 53
 - Aquafil’s EverPET® 53
 - Cumapol’s CuRe process 53
 - Equipolymers’ Veridis 54
 - Garbo’s ChemPET® 54
 - IBM’s VolCat® Process 54
 - Ioniqa Technologies’ Magnetic Smart Materials and Separation Process 55
 - perPETual chemical recycling process (PCRP) 57
 - PET Refine Technology’s polyester recycling process 59
 - Resinate® materials group Recycolysis™ process 60
 - Sabic’s post-consumer PET upcycle process 60
 - Teijin Fibers’ ECO-CIRCLE® process 61
 - Uhde Inventa-Fischer (UIF) Flake-to-Resin (FTR®) process 61
 - Hydrolysis 63
 - CARBIOS’ enzymatic depolymerization of PET 65
 - Gr3n’s DEMETO 66
 - Methanolysis 68
 - DuPont’s polyester regeneration technology 69
5 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex 78

Introduction 78
Process description 78
Section 100—Feed preparation 85
Section 200—Depolymerization 85
Section 300—Product recovery and purification 85

Process discussion 86
Plant design capacity 86
Onstream factor 86
Recycled PET feedstock 86
Catalyst complex 86
Depolymerization 87
Catalyst complex recovery 88
Product recovery 88
Material of construction 89
Waste treatment 89

Cost estimate for chemical recycling of PET 89
Capital costs 89
Production costs 94
Ionic liquid catalyst complex cost estimation 95
PET cost estimation using feedstock from chemical recycling of post-consumer PET 101

6 Chemical recycling of PET using Uhde Inventa-Fischer Flake to Resin (FTR®) process 105

Introduction 105
Process description 105
Off-sites 110
Section 100—Esterification and pre-polycondensation 110
Section 200—Polycondensation section 112
Section 300—FTR® recycling 112

Process discussion 112
Plant design capacity 112
Onstream factor 113
Recycled PET feedstock 113
MTR® process 113
FTR® process 113
Material of construction 113
Waste treatment 114

Cost estimates 114
Capital costs 114
Bottle-grade PET (IV 0.82 dL/g, 30% recycled content) production costs 119
Comparison of process economics of bottle-grade PET (IV 0.82 dL/g, 30% recycled content) with virgin bottle-grade PET production 122

7 Chemical recycling of PET by a process similar to Eastman’s methanolysis process 124

Introduction 124
Process description 124
Section 100—Feed preparation 132
Section 200—Depolymerization 132
Section 300—Product recovery and purification 132

Process discussion 133
Plant design capacity 133
Onstream factor 133
Recycled PET feedstock 133
Depolymerization 133
Tables

Table 2.1 Summary of several companies with glycolysis processes 16
Table 2.2 Summary of companies with hydrolysis processes 17
Table 2.3 Summary of several companies with methanolysis processes 17
Table 2.4 Capital estimate for PET production plant with integrated PET chemical recycling unit 19
Table 2.5 PET production costs 20
Table 2.6 Capital estimate for PET plant with an integrated PET chemical recycling FTR® unit 22
Table 2.7 Production costs for PET plant with an integrated PET chemical recycling FTR® unit 23
Table 2.8 Process economics for chemical recycling of PET by a process similar to Eastman’s methanolysis process 25
Table 2.9 Estimated product values of CHDM and specialty copolyesters based on recycled feedstock 27
Table 3.1 IV of PET resin by application 30
Table 3.2 Leading global producers of PET melt-phase resins (2019) 32
Table 3.3 Leading global producers of PET bottle resins (2019) 33
Table 3.4 United States post-consumer PET bottle flow—2019 35
Table 3.5 United States PET prices 39
Table 4.1 Typical composition of PTA 42
Table 4.2 Typical specification of polyester grade EG 45
Table 4.3 PET model bale specification 45
Table 4.4 Minimum requirements for rPET for BtoB 47
Table 4.5 Commercial Uhde Inventa Fischer’s Flake-To-Resin plants 63
Table 4.6 Comparison of reaction times using microwave 64
Table 4.7 Commercial specialty copolyesters containing CHDM 74
Table 4.8 Comparison of Loop’s Generation I and Generation II process 76
Table 5.1 Chemical recycling of PET by a glycolysis process using an ionic liquid catalyst complex—Design bases 79
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows 80
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (continued) 80
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (continued) 81
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (continued) 81
Table 5.2 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major stream flows (concluded) 82
Table 5.3 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major equipment 82
Table 5.3 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major equipment (continued) 83
Table 5.3 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major equipment (continued) 84
Table 5.3 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Major equipment (concluded) 84
Table 5.4 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Utilities summary 84
Table 5.5 Patent example 1 (WO 2016105200) 87
Table 5.6 Summary of major waste streams 89
Table 5.7 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Total capital investment 92
Table 5.8 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Capital investment by section 93
Table 5.9 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex—Production costs 94
Table 5.10 Ionic liquid catalyst complex—Major stream flows 96
Table 5.10 Ionic liquid catalyst complex—Major stream flows (concluded) 97
Table 5.11 Ionic liquid catalyst complex—Major equipment
Table 5.12 Ionic liquid catalyst complex—Production costs
Table 5.12 Ionic liquid catalyst complex—Production costs (concluded)
Table 5.13 Capital estimate for PET production plant with integrated PET chemical recycling unit
Table 5.14 PET production costs
Table 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Design bases
Table 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Design bases (continued)
Table 6.2 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Major stream flows
Table 6.2 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Major stream flows (continued)
Table 6.3 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Capital investment by section
Table 6.3 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Capital investment by section (concluded)
Table 6.4 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Utilities summary
Table 6.4 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Utilities summary (concluded)
Table 6.5 Summary of major waste streams
Table 6.6 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Total capital investment
Table 6.6 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Production costs
Table 6.6 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Production costs (concluded)
Table 6.7 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Utilities summary
Table 6.7 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Utilities summary (concluded)
Table 6.8 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Capital investment by section
Table 6.8 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process—Capital investment by section (concluded)
Table 6.9 Capital estimate for PET production plant with integrated PET chemical recycling unit
Table 6.10 PET production costs
Table 7.1 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Design bases
Table 7.1 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Major stream flows
Table 7.2 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Major stream flows (continued)
Table 7.2 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Capital investment by section
Table 7.2 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Major stream flows (concluded)
Table 7.3 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Utilities summary
Table 7.4 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Utilities summary (concluded)
Table 7.5 Summary of major waste streams
Table 7.6 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Total capital investment
Table 7.7 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Production costs
Table 7.8 Chemical recycling of PET by a process similar to Eastman’s methanolysis process—Production costs (concluded)
Table 7.9 Estimated product values of CHDM and specialty copolyesters based on recycled feedstock
Figures

Figure 1.1 Plastic recycling flow 10
Figure 1.2 Chemical recycling of PET 11
Figure 2.1 Chemical recycling of PET 15
Figure 2.2 Block flow diagram of chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex 18
Figure 2.3 Block flow diagram of PET production plant with integrated PET chemical recycling unit 19
Figure 2.4 Uhde Inventa Fischer’s Flake-To-Resin process 21
Figure 2.5 Block flow diagram of Eastman’s methanolysis process 24
Figure 2.6 Effect of post-consumer PET bale price on DMT product value 26
Figure 3.1 PET melt resin end use 29
Figure 3.2 PET bottle-grade resin end use—2019 30
Figure 3.3 Global PET end-use trend 31
Figure 3.4 Global PET operating rate 32
Figure 3.5 rPET end use for 2019 United States 36
Figure 3.6 World production of recycled PET solid-state resins by region (year 2018–24 forecast) 37
Figure 3.7 World production of PET solid-state resins by region (year 2018–24 forecast) 37
Figure 3.8 Historic PET pricing (United States) 40
Figure 4.1 Structure of polyethylene terephthalate (PET) 41
Figure 4.2 Polymer recycling categories 45
Figure 4.3 Chemical recycling of PET 50
Figure 4.4 Glycolysis of PET with EG 52
Figure 4.5 Equipolymers post-consumer Viridis PET chemical recycling process 54
Figure 4.6 Iron oxide (Fe3O4) nanoparticles functionalized with an ionic liquid catalyst 56
Figure 4.7 Ioniqa’s post-consumer PET chemical recycling process 57
Figure 4.8 perPETual Chemical recycling process 59
Figure 4.9 Sabic’s post-consumer PET upcycle process 60
Figure 4.10 Teijin Fibers’ ECO-CIRCLE® process 61
Figure 4.11 Uhde Inventa Fischer’s Flake-To-Resin process 62
Figure 4.12 Hydrolysis of PET with NaOH 63
Figure 4.13 Hydrolysis of PET with sulfuric acid 64
Figure 4.14 Carbios’ enzymatic PET depolymerization process 66
Figure 4.15 DEMETO process 67
Figure 4.16 Methanolysis of PET with methanol 68
Figure 4.17 Eastman Kodak’s methanolysis process to recycle x-ray films 70
Figure 4.18 Eastman’s PET chemical recycling methanolysis process 73
Figure 4.19 Loop Industries’ Generation I depolymerization process 75
Figure 4.20 Loop’s Generation II depolymerization process 76
Figure 4.21 Mitsubishi Heavy Industries’ PET chemical recycling process 77
Figure 5.1 Chemical recycling of PET by the glycolysis process using an ionic liquid catalyst complex (1 of 2) 171
Figure 5.2 Catalyst complex synthesis 173
Figure 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process (1 of 2) 174
Figure 6.1 PET (bottle grade resin IV 0.82 dL/g, 30% recycled content) production in an integrated plant by UIF Melt-to-Resin process and Flake-to-Resin process (2 of 2) 175
Figure 7.1 Chemical recycling of PET by a process similar to Eastman’s methanolysis process (1 of 2) 176
Figure 7.1 Chemical recycling of PET by a process similar to Eastman’s methanolysis process (2 of 2) 177