

Post Consumer Plastic Recycling

PEP Report 199C September 2019

Jonny Goyal Associate Director

Process Economics Program

PEP Report 199C

Post Consumer Plastic Recycling

Jonny Goyal, Associate Director

Abstract

Plastics have become one of the most ubiquitous materials in our everyday lives. However, the proliferation of plastics that are entering and clogging our rivers, oceans, and landfills each year has also brought adverse environmental impacts. An estimated 8.3 billion metric tons of plastic has been produced in total since the 1950s, and recent research shows that only 9% has been actually recycled, 12% has been incinerated, and the remaining roughly 80% has largely ended up in landfills, in the oceans, or loose in the environment. This is a major global challenge and it has sparked strong interest in more efficient production, use and disposal of plastics, in line with the principles of the circular economy. There is also increasing regulatory pressure regarding recycling quota and recyclability along with strong commitments from global chemical industries towards increasing the share of recycled material in their offerings. As pressure builds on chemical makers to solve the plastic waste problem, firms are increasingly exploring chemical recycling as a complement to traditional mechanical techniques that reforms it into a usable pellet only.

This report discusses chemical recycling of plastics (mainly polyolefins from mixed waste plastics) using pyrolysis (thermal and catalytic depolymerization). The objective of this report is to evaluate the process economics of associated technologies. We present a comprehensive description on the technology aspects, current industry status across globe, and major risk factors related to technology implementation. Following cases are covered in this report:

- 1. Case I—Plastic Energy's TAC Process (to produce TACOIL for refineries cracker)
- 2. Case II-Klean Industries SPR Plastic Pyrolysis Process
- 3. Case III—Agilyx pyrolysis process to produce synthetic crude oil from mixed waste plastics.

We have used Aspen Hysys and IHS Markit's internal tools to work out a process design and its economics. We have tried to put forward the behaviours of lights ends, medium ends, and heavy ends produced from pyrolysis using these tools and have assigned plus compared their market prices accordingly. The main challenges associated with the economics of plastic pyrolysis processes remain with the selection of proper feedstock, plant capacity, and tipping fee. There are many plants coming up across globe to recycle waste plastics but they are yet to be expanded to operate on an industrial scale. Most of the pyrolysis players have modular units' approach (10–50tpd). Due to their smaller scale, it has been easier for companies to keep some pilot facilities running. To bring it to an industrial scale, chemical recycling needs to strike a balance between economic viability, regulatory compliance, and environmental impact.

With chemical recycling, we break down plastic to its core building blocks down to the molecular level. It can take a higher degree of contamination (organic & non-organic materials) than mechanical recycling and also allows plastic to be recycled an infinite number of times. But specific plastics like PET and PVC have limits that may increase the upstream pretreatment cost. Moreover, being a fairly

new processes, chemical recycling needs to be conceptualized in the legislation, so that its output material is clearly defined and distinguished from energy recovery. Chemical recycling should be seen as a complementary solution to mechanical recycling when the latter proves to be inefficient in case of difficult to recycle plastics, i.e., not properly sorted, multilayered or heavily-contaminated waste. At the same time, increased collection of high-quality waste and design for recycling should remain the two priorities in order to increase the recycling rates for plastics.

Contents

1	Introduction	16
	Background	17
	Thermoplastics	19
	Thermosetting plastic	21
	Mainly used plastics, their monomers and properties	22
	Plastic classification	23
	Plastics production, waste generation, and its impact/ Why plastic recycling is the need of the day	25
	Plastic recycling	29
	Scope of this report (Post-consumer plastic recycling)	33
	What has been done before	34
2	Summary	35
	Industry aspects	35
	Plastics waste generation data	36
	Post-consumer plastics waste	37
	Technical aspects	38
	Three cases for comparison	40
	Plastic energy's TAC process for thermal depolymerization of plastics	40
	Klean Industries's SPR Process for recycling plastics	41
	Agilyx pyrolysis process for mixed waste plastics to synthetic crude oil	42
	Economic aspects	44
	Capital cost economics comparison	45
	Product cost economics comparison	46
	Conclusions	47
~	Risk factors	49
3	Industry status	53
	Global plastics and polymers market outlook	53
	Global plastics recycling performance (rate)/ Growing Recycling Demand/ State of plastic recyclin	y 56
	Plastic disposable methods	58
	Plastics recycling rate by regions and polymer	59
	Global trade flows waste plastics and China plastic import ban	61
	The recycled plastics value chain	64
	Plastic-to-oil companies, technology type, and status	67
	Pilot and demonstration plants	67
	Klean Industries	70
	Carbonization, Pyrolysis, and Liquefaction	70
	Gasification	70
	Plastic Energy/ Cynar/ Sabic	73
	Agilyx	75
	Renewlogy	78
	Recycling technologies	78
	Plastic2Oil (JBI)	80
	RES Polyflow	81
	Vadxx	82
	MK Aromatics	82
	Blest Japan	83
	Neste, ReNew ELP, Licella	83
	LyondellBasell, SUEZ, Quality Circular Polymers, KIT	84
	BASF, ChemCycling, Recenso	85

	BioCellection	86
	Total/Synova	86
	PolyCycl (Ventana)	87
	Rudra Environmental Solutions (India) Ltd.	87
	Agile Process Chemicals LLP (Pyrocrat Systems)	88
	PARC	90
	Nexus Fuels	91
	CSIR-IIP-GAIL	91
	Global Renewables	92
	Cassandra Oil	93
	Climax Global Energy	94
	Ecoloop GmbH	95
	Artim Green Energy (Cogenera)/ GB Consulting s.r.o/ Plasma Energy	97
	Integrated Green Energy Solutions	100
	GGI Energy	100
	Enerkem	101
	Beston (Henan) Machinery Co., Ltd.	102
	Jinpeng Industrial	103
	Alternative Energy Systems Ltd. (AESL), Kenya	105
	GEN2WTE	105
	Other Plastic-2-Oil market players	106
4	Plastic recycle technology review	108
	Plastic mechanical recycling as pellets	110
	Molecular/ or chemical recycling	112
	Basic chemistry of molecular/ or chemical recycling	113
	Thermolysis schemes and technologies	114
	Depolymerization (Pyrolysis)	114
	Kinetics and mechanism of pyrolysis	116
	Thermal pyrolysis of polyolefin	118
	Catalytic pyrolysis of polyolefins	119
	Pyrolysis products and yields	122
	Composition of plastic waste feed considered for this report	125 125
	Major variations in composition of waste Source	125
	Geographical location	123
	Time	120
	Effect of plastic composition on the final product of pyrolysis process	127
	Polyolefins	128
	Polystyrene	128
	Polyvinyl chloride	128
	Polyethylene terephthalate	129
	Other plastics	130
	Nonplastics	130
	Assumed composition of plastics waste feed	130
	Treatment of waste plastics (polyolefins) before pyrolysis	132
	Factors affecting plastic pyrolysis	134
	Chemical composition of feedstock	134
	Cracking temperature	134
	Cracking heating rate	136
	Type of reactor	136
	Residence time	139
	Use of catalyst	140
	Pressure	142
	Pyrolysis products and their possible applications	142

	Pyrolytic gas	143
	Pyrolytic oil	143
	Pyrolytic char	145
	Waste plastic gasification	145
	Gasification chemistry	147
	Gasifier reactor design	147
	Brief comparison of gasification technologies	149
	Concluding remarks on pyrolysis and gasification of waste plastics	150
	Summary on technology review	150
	Plastic recycling Integration with oil refining	152
5	Case I: PlasticEnergy/ Cynar Pyrolysis Process	154
3	Introduction	155
	Overall process schematic	155
	•	155
	Plastic Energy's pyrolysis technology platform	150
	Case assumptions Process description	161
	Section 100—Feed preparation	161
	Section 200— Melting/ Dehydrochlorination	162
	Section 300—Pyrolysis	162
	Process discussion	163
	Effect of feed composition on product value	166
	Heat and material balance using Aspen Hysys	166
	Cost estimates	173
	Fixed capital costs	173
	Production costs	175
	Sensitivity analysis and cost discussion	177
	Conclusion	180
6	Case II: Klean Industries SPR Plastic Liquefaction Process	181
	Introduction	181
	SPR plastic-to-gasoline technology platform	182
	Case assumptions	187
	Process description	190
	Section 100—Pretreatment	190
	Section 200—Melting/ Dehydrochlorination	191
	Section 300—Pyrolysis	191
	Process discussion	192
	Heat and material balance using Aspen Hysys	
		194
	Cost estimates	201
	Cost estimates Fixed capital costs	201 201
	Cost estimates Fixed capital costs Production costs	201 201 204
	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion	201 201 204 206
	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions	201 201 204 206 209
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process	201 201 204 206 209 210
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction	201 201 204 206 209 210 210
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform	201 201 204 206 209 210 210 210
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review	201 201 204 206 209 210 210 210 210 216
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review Case assumptions	201 204 206 209 210 210 210 216 218
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review Case assumptions Process description	201 204 206 209 210 210 210 216 218 220
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review Case assumptions Process description Section 100—Feed preparation	201 204 206 209 210 210 210 216 218 220 221
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review Case assumptions Process description	201 204 206 209 210 210 210 216 218 220 221 221
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review Case assumptions Process description Section 100—Feed preparation	201 204 206 209 210 210 210 216 218 220 221
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review Case assumptions Process description Section 100—Feed preparation Section 200—Pyrolysis and vapor recovery	201 201 204 206 209 210 210 210 216 218 220 221 221
7	Cost estimates Fixed capital costs Production costs Sensitivity analysis and cost discussion Conclusions Case III—Agilyx plastic pyrolysis process Introduction Agilyx's mixed waste plastic to crude oil pyrolysis technology platform Agilyx Generation-6 process review Case assumptions Process description Section 100—Feed preparation Section 200—Pyrolysis and vapor recovery Section 300—Crude oil conditioning system	201 204 206 209 210 210 210 216 218 220 221 221 221

Fixed capital costs	232
Production costs	234
Sensitivity analysis and cost discussion	236
Conclusions	238

Figures

Figure 1.1 Global plastic production	16
Figure 1.2 Recycling rates in selected high economic countries	17
Figure 1.3 Manufacturing plastics from raw material	18
Figure 1.4 Common classification of plastics	25
Figure 1.5 How long (in years) does the TRASH last	27
Figure 1.6 Plastic disposal and post-disposal figures comparison figures	28
Figure 1.7 Facts about mixed plastic waste energy value	29
Figure 1.8 Plastic recycling flow sequence	30
Figure 1.9 Polymer recycling categories	31
Figure 1.10 Integrated life-cycle loop for thermoplastic resins	33
Figure 2.1 Plastic production mass by global region 2016-18	36
Figure 2.2 Global plastic waste generation by polymer (million tons), year 1950 to 2015	37
Figure 2.3 Global plastic waste generation (million tons) by product category in year 2015	37
Figure 2.4 Capital cost economics comparison	45
Figure 2.5 Production cost comparison	46
Figure 3.1 World demand by major polymers (275 million metric tons)—2018	53
Figure 3.2 World: LDPE supply & demand	54
Figure 3.3 World: LLDPE dupply & demand	55
Figure 3.4 World: HDPE supply & demand	55
Figure 3.5 World: Polypropylene supply & demand	56 57
Figure 3.6 Recycled content in global plastic production	16
Figure 3.7 Global plastic waste generation, recycling, incineration, and disposal: from year 1950 to 2015	58
Figure 3.8 Extrapolated change in plastic fate to 2050	50 59
Figure 3.9 Plastic recycling in the EU, USA, Australia, and Japan (2005—15)	60
Figure 3.10 Top ten global exporters of waste plastics, 2006 to 2015 (excluding HK)	61
Figure 3.11 Global waste plastic imports, 2006–15 (million tons)	63
Figure 3.12 Market value of major polymers	64
Figure 3.13 Different types of products from pyrolysis, gasification, and liquefaction	71
Figure 3.14 Functional outline of the Sapporo Plastic recycling (SPR) liquefaction process	72
Figure 3.15 Typical representation of Plastic Energy/ Cynar Plastic recycling process	74
Figure 3.16 Cynar process: proven science and technology used by FOY group	75
Figure 3.17 Agilyx technology supplied to GenAgain—Process flow diagram	76
Figure 3.18 Agilyx overall technology development status	77
Figure 3.19 Recycling Technologies overall technology development status	79
Figure 3.20 Recycling Technologies process overview	80
Figure 3.21 Plastic2Oil process overview	81
Figure 3.22 KIT fast pyrolysis process scheme	85
Figure 3.23 DieselWest Plant flow chart	86
Figure 3.24 Rudra Environmental Solutions Technology flowchart (plastic pyrolysis)	88
Figure 3.25 Agile Process Chemical technology overview (plastic-to-oil)	89
Figure 3.26 Agile Process Chemical technology (plastic-to-oil)—Process flow chart	89
Figure 3.27 Process flow scheme—PARC pyrolysis process	90
Figure 3.28 Process flow scheme—Nexus Fuel plastic pyrolysis process	91
Figure 3.29 Process flow scheme – CSIR-IIP-GAIL plastic depolymerization process	92
Figure 3.30 Process flow scheme—Cassandra Oil's CASO Catalytic thermal depolymerization technology	94
Figure 3.31 Climax Global Energy Inc.'s Commercial Plastic Depolymerization Unit	94 95
Figure 3.32 Ecoloop GmbH plastic depolymerization unit in Germany	96
Figure 3.33 Ecoloop GmbH gasifier system	90 97
Figure 3.34 GB pyrolysis unit assembly	99
Figure 3.35 General process flow chart of GB pyrolysis process	99
Figure 3.36 General schematic of GGI Energy process	100
Figure 3.37 Enerkem's planned waste-to-methanol plant in Rotterdam	101

Figure 3.38 Typical process flow scheme of Beston's modular plastic pyrolysis plant Figure 3.39 Process flow diagram—ASEL pyrolysis plant technology	103 105
Figure 4.1 Different approaches for recycling solid waste	109
Figure 4.2 The stages of plastic recycling process Figure 4.3 Plastic recycling process	110 111
Figure 4.4 A plastic shredder assembly	112
Figure 4.5 A generic PTF process	115
Figure 4.6 Proposed macroscopic mechanism of the end chain cracking of polymers at gas-liquid surface	117
Figure 4.7 Schematic depiction of the fluid catalytic cracking (FCC) process	121
Figure 4.8 A schematic of a typical steam cracking furnace	122
Figure 4.9 Temperature profile along the tube reactor	135
Figure 4.10 GC analysis results of plastic pyrolysis liquid	135
Figure 4.11 Schematic presentation of some reactors typically used in PTL processes	137
Figure 4.12 A typical pyrolysis facility with rotary kiln reactor and de-chloronation unit Figure 4.13 Influence of residence time on the production of gaseous product (from HDPE thermal	139
and catalytic cracking)	140
Figure 4.14 Effect of pressure on the distribution of PE pyrolysis products and respective yield of gas	142
Figure 4.15 Typical pyrolysis products and their applications	143
Figure 4.16 The concept of waste polyolefins recovery	144
Figure 4.17 The main steps occurring in gasification	146
Figure 4.18 Overview of synthesis routes from syngas	146
Figure 4.19 Main gasifier types Figure 4.20 Thermoselect process	148 151
Figure 4.20 Integration of plastic waste processing with oil refining operations	154
Figure 5.1 Block scheme of the Plastic Energy's TAC process	156
Figure 5.2 Conversion of waste plastic material to fuel (patent US 10131847 B2)	157
Figure 5.3 Pyrolyzer reactor system (patent US 10208253 B2)	158
Figure 5.4 Pyrolyzer reactor system—contactor arrangement (patent US 10208253 B2)	158
Figure 5.5 Basic set-up of Aspen Hysys to determine product quality and separation	167
Figure 5.6 Boiling point properties of product oils from simulation—TAC Process	168
Figure 5.7 Plastic Energy's TAC Process for plastic recycling (Case I)—Effect of plant capacity on	475
investment cost Figure 5.8 Impact of feedstock price on net production cost and product value, Case I (For base	175
capacity of 22 t/day of waste plastic input feedstock producing 9.58 million lb/yr of diesel oil)— based on PEP Cost Index 1,212	178
Figure 5.9 Impact of feedstock price on net production cost and product value, Case I (For base	170
capacity of 44 t/day of waste plastic input feedstock producing 19.16 million lb/yr of diesel oil)— based on PEP Cost Index 1,212	179
Figure 6.1 Primary applications Klean Industries Inc.	181
Figure 6.2 Liquefaction process SPR	182
Figure 6.3 SPR plastic liquefaction process	183
Figure 6.4 SPR pyrolysis reactor	184
Figure 6.5 The generation thing recovery ratio of a SPR Plant	185
Figure 6.6 Distillation characteristics of product oils for SPR process	194
Figure 6.7 Basic set-up of Aspen Hysys to determine product quality and separation	195
Figure 6.8 Boiling point properties of product oils from simulation— SPR process	196
Figure 6.9 Klean Industries SPR Process for plastic recycling (Case II)—Effect of plant capacity on investment cost	204
Figure 6.10 Impact of feedstock price on net production cost and product value Case II (For base	
capacity of 22 t/day of waste plastic input feedstock that yield 4.54 million lb/yr of light oil)— Based on PEP Cost Index 1,212	207
Figure 6.11 Impact of feedstock price on net production cost and product value Case-II (for base	_07
capacity of 44 t/day of waste plastic input feedstock yielding 9.08 million lb/yr of light oil)—based on PEP Cost Index 1,212	208
Figure 7.1 Agilyx core technology platform	211


Figure 7.2 Agilyx Pyrolysis Process for mixed waste plastic to crude oil	212
Figure 7.3 Agilyx plastic recycling system—patent US 9145520 B2	213
Figure 7.4 A typical cartridge used in Agilyx Pyrolysis Process—patent US 2012/0222986A1	215
Figure 7.5 Crude oil conditioning system in Agilyx Pyrolysis Process—patent US 9493713B2	216
Figure 7.6 Agilyx continuous batch process	217
Figure 7.7 Basic set-up of Aspen Hysys to determine separation	226
Figure 7.8 Boiling point properties of light ends and synthetic crude oil from simulation—Agilyx	
process	227
Figure 7.9 Agilyx mixed waste plastics to crude oil pyrolysis process (Case III)-Effect of plant	
capacity on investment cost	234
Figure 7.10 Impact of feedstock price on net production cost and product value-Case-III (for base capacity of 40 t/day of waste plastic input feedstock producing 20.6 million lb/yr of synthetic	
crude oil)—Based on PEP Cost Index 1,212	238
Figure 8.1 Plastic Energy's (Cynar) TAC waste plastic pyrolysis process (Case I)	256
Figure 8.2 Klean Industries SPR Plastic Recycling process (Case II)	257
Figure 8.3 Agilyx mixed waste oil to crude oil pyrolysis process (Case III)	258

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Writher IHS
Markit logos and trade names contained in this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

