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Abstract

We compare the efficiency of quasi-Monte Carlo (QMC) methods to classical Monte Carlo
(MC) method and MC with antithetic sampling in computing credit valuation adjustment
(CVA) and CVA sensitivities for various portfolios of interest rate swaps using a multi-
currency extension to the Hull-White model. For uncollateralized portfolios using local
models, we find that QMC with Sobol sequences and the Brownian bridge discretization
can produce results as accurate as classical MC with 10,000 simulations when using on
average roughly only 800 simulations, a speed-up by a factor of 12. However, we also find
that the acceleration varies significantly across portfolios (increasing with moneyness and
usually, but not always, decreasing with the number of factors), calculation types (order
from highest to lowest, usually, but not always, CVA and CR Deltas, IR and FX Deltas,
and IR and FX Vegas), and the choice of model (local models usually outperform global
models). While the Brownian bridge discretization is less effective on the collateralized
portfolios, the so-called Brownian bridge portfolio interpolation technique significantly
improves the results. Randomization of Sobol’ sequences, a technique shown to increase
the convergence rate of QMC on a particular class of integrands, is found to be most
effective on test cases with small numbers of dimensions.

Keywords: CVA, Greeks, Monte Carlo, Quasi-Monte Carlo, Sobol’ Sequences

1 Introduction

One of the most important counterparty credit risk measures is the credit valuation adjustment
(CVA), defined as the present value of the potential loss due to a counterparty failing to meet
their contractual obligations. Risk neutral pricing states that the present value is equal to the
expected value of the payoff using risk adjusted probabilities. The CVA payoff is the netted
portfolio value less collateral (floored at zero) at the time of counterparty default, multiplied
by one minus the recovery rate. The payoff is at counterparty level, potentially path dependent
(collateral, early exercise conditions, lags between fixings and cash flows), and subject to change.
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The expectation of high-dimensional, fluid payoffs of this sort are in practice estimated with
Monte Carlo (MC) simulation (see Gregory (2015) [11]) .

Monte Carlo estimation of an expectation involves randomly sampling the payoff n times
according to the risk neutral probabilities and averaging the results. The estimate approaches
the true expectation with probability 1 with a normally distributed error with zero mean and
standard deviation equal to the standard deviation of the payoff (a constant) divided by the
square root of the number of replications n used (see Jäckel (2002) [13] and Glasserman (2004)
[10] for detailed explanations of MC and its application to finance).

Requiring the error to be on average 100 times smaller than the standard deviation of the
CVA payoff requires 10,000 replications, a number typically used. This highlights the main
disadvantage of MC: its computational expense. This is of particular importance in the context
of CVA where each evaluation of the payoff is also computationally expensive. Consider a bank
with 100,000 trades that uses 200 exposure dates in the time discretization. One replication of
the CVA payoffs across all counterparties requires roughly 10,000,000 trade prices (assuming
trade maturities are evenly distributed) and thus one MC CVA estimate using 10,000 paths
requires of the order of 100,000,000,000 trade price evaluations. Furthermore, many banks risk
manage these credit adjustments, and to do so requires the calculation of the derivatives of the
CVA with respect to the market prices of the instruments used to hedge it. Bump and run
techniques require at least one full MC CVA calculation per derivative. 200 derivatives bring
the computational load up to 20,000,000,000,000 trade price evaluations per day.

Not surprisingly, quants have been searching for ways to accelerate this massive calculation.
One successful line of research uses adjoint algorithmic differentiation (AAD) to compute the
derivatives, reducing the computational burden to a fixed multiple (5 to 10 times depending
on the problem and memory handling) of the baseline CVA calculation, no matter how many
derivatives are required (see Giles and Glasserman (2006) [9] and Capriotti et al. (2011) [7] for
more information). Assuming a conservative fixed multiple of 10, this would reduce the total
number of calculations by a factor of 20, requiring 1,000,000,000,000 trade price evaluations.
This dramatic improvement, however, does not come for free. The implementation of an AAD
enabled system requires large changes to existing code libraries, requiring a significant upfront
investment to implement. As a consequence, many still compute the derivatives using bump
and run techniques.

In another line of research, Ghamami and Zhang (2014) [8] highlight that direct and inde-
pendent simulation of the portfolio value to each time step, rather than the usual chronological
time stepping scheme, diversifies the errors across each CVA time bucket, leading to a signif-
icant reduction of the standard error of the final sum across time. The benefit of the direct
simulation approach is reduced if simulating to each time step independently is more computa-
tionally expensive than simulating to each step sequentially using a common simulation path.
Highly path dependent simulation models and portfolios may not benefit as a result, but the
technique looks quite promising for portfolios of uncollateralized vanillas.

In a similar line of research, Burnett et al. (2016) [5] note that the computational expense
of calculating valuation adjustment risks (derivatives) vary significantly across different coun-
terparties, and that the computational expense is uncorrelated with the size of the adjustment
error. This opens up the possibility to optimally allocate computational resources where they
are needed most, using a different number of paths and/or time steps for different counterpar-
ties and risks. They formalize this idea by setting up and minimizing the expected unexplained
Profit and Loss (PnL) by varying the number of paths and frequency of time steps allocated to
each counterparty and risk, subject to a computational time constraint. The acceleration they
report computing FVA on a sample Barclays portfolio is impressive, roughly in line with the
acceleration provided by AAD.

In this article, we explore yet another, potentially complementary, acceleration technique
commonly used to price single trade payoffs called quasi-Monte Carlo (QMC). The mechanics
are identical to classical Monte Carlo simulation with the exception that the pseudo random
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numbers (PRN) are replaced with carefully selected low-discrepancy sequences (LDS) that are

more evenly distributed. This has been shown to result in convergence rates between O(n−
1
2 )

and O(n−1), depending on the complexity of the payoff, and more specifically, on how heavily
the payoff depends on interacting terms between the uniform random variables. Payoffs that
heavily depend on interaction terms result in convergence rates closer to classical Monte Carlo,
O(n−

1
2 ), whereas payoffs that do not result in convergence rates closer to O(n−1). The degree of

interaction is called the effective dimension, and was first described by Caflisch et al. (1997) [6].
In the same paper, they also point out that the effective dimension of a payoff is not fixed, and
can be reduced by reformulating the payoff or risk factor simulation to depend more on fewer,
earlier indexed random variables. A common example is the Brownian bridge discretization.

The best-case convergence rate would be a remarkable result, reducing the number of re-
quired replications by a factor of 1/

√
n, an acceleration of 100 times in our example above. The

obvious question is then can we achieve the optimal convergence rate when estimating CVA
payoffs, despite their high nominal dimension? This is hard to answer in general, as it depends
on the portfolio (which varies by counterparty and by bank) and the model used to evolve the
risk factors. In this paper, we narrow the scope of this question and focus on the efficiency
of QMC when used to compute CVA and CVA sensitivities for a specific class of portfolios
(vanilla interest rate swap portfolios) and a specific model class (multi-currency extension to
the Hull-White model, see Hull and White (1994) [12], with deterministic hazard rates).

We do not present any new theories or methodologies in this paper, the core concepts that
we use have been described in detail in papers and books referenced throughout. Our primary
contribution is the presentation of how well QMC methods work when used to estimate CVA
and CVA sensitivities for a specific class of portfolios and models. To the best of our knowledge,
aside from the work of Bianchetti et al. (2016) [3] and the brief analysis at the end of Sobol’ et
al. (2012) [29], very few results have been published on this topic.

Overviews of the payoffs, simulation models, and numerical techniques are provided first.
The core set of numerical experiments and the corresponding results are presented second.
We then look to see how these results are impacted by various changes, including using global
models rather than local models, using more simulation time steps, and finally adding collateral.

2 Monte Carlo CVA Estimate

The bilateral CVA to a portfolio held against a counterparty c is

CVAt0 = (1−Rc)
∫ T

t0

Et0

[
Nt0
Nt+δ

max(Vt+δ + Ft,t+δ − Ct+δ, 0)

]
P (τ b > t)dP (τ c < t), (1)

where t0 is today, T is the maturity date of the portfolio, Rc is the recovery rate if the coun-
terparty defaults (assumed to be deterministic), Nt is the numeraire corresponding the risk
adjusted probability measure used in the expectation, δ is the time lag between the default
event and the settlement of the portfolio (margin period of risk), Vt+δ is the netted idealized
value of all trades held against the counterparty c at time t + δ, Ft,t+δ is the netted primary
trade flows not paid between the default time t and settlement time t+ δ with accrued interest,
Ct+δ is the collateral posted by the counterparty (positive) or bank (negative) at settlement
time t + δ, τc and τb are the default times of the counterparty and bank, and P (τc < t) is the
time t0 probability τc is less than t, and P (τb > t) is the time t0 probability τb is greater than
t (we have have assumed a reduced form model where default times are independent of each
other and the exposures). See Gregory (2015) [11] for a general description and Anderson et
al. (2017) [1] for the nuances of δ, F and C. The uncollateralized case with zero settlement lag
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simplifies to:

CVAt0 = (1−Rc)
∫ T

t0

Et0

[
Nt0
Nt

max(Vt, 0)

]
P (τ b > t)dP (τ c < t). (2)

Given a time grid t = [t0, t1, t2, . . . , tm]′, a left-hand Riemann-sum approximation1 to the
integral in (2) and a Monte Carlo approximation of the expectation using n simulations results
in the following formula for the CVA estimate:

CVAMC
t0 =

(1−Rc)
n

m−1∑
i=0

n−1∑
ω=0

Nt0
Nω
ti+δ

max(V ωti+δ + Fωti,ti+δ − C
ω
ti+δ, 0)

P (τ b > ti+1)P (ti ≤ τ c < ti+1), (3)

where the superscript ω denotes the path index for stochastic variables. These variables are
deterministic functions of the realization of an nfactor-dimensional risk factor vector Xt at a set
of fixing dates on or before their respective observation dates.

Nω
ti+δ = N(ti + δ,Xω

s≤ti+δ)

V ωti+δ = V(ti + δ,Xω
s≤ti+δ)

Cωti+δ = C(ti + δ,Xω
s≤ti+δ, V

ω
s≤ti+δ)

Fωti,ti+δ = F(ti, ti + δ,Xω
s≤ti+δ)

(4)

We consider a model with the following risk factor dynamics:

dXt = [AXt + ft] dt+ ΣtdWt (5)

where A is a nfactor by nfactor constant matrix of reals, ft is a time dependent vector of nfactor

reals, Σt is a time dependent matrix of nfactor by nfactor reals, and dWt is a vector of nfactor

Wiener processes in the domestic T -forward measure, with a constant instantaneous correlation
matrix R.

The risk factor vector Xt is simulated to a set of fixing dates tf = [tf0 , t
f
1 , t

f
2 , . . . , t

f
nfixing ]′,

where tf0 = 0 < tf1 < tf2 < . . . < tfnfixing = T (which includes the exposure dates and settlement

dates t, t+ δ ∈ tf ) using, for example, a basic Euler scheme2. In equations, start at tf0 = 0 with
X0 given, and chronologically iterate over the fixing indices i = 1, 2, . . . , nfixing:

ξωi = Φ−1(uωi )

Ŵω
tfi

= Ŵω
tfi−1

+ ξωi
√

∆i

Wω
tfi

= Wω
tfi−1

+
√
R
[
Ŵω
tfi
− Ŵω

tfi−1

]
Xω
tfi

= Xω
tfi−1

+
[
AXω

tfi−1

+ ftfi−1

]
∆i + Σtfi−1

[
Wω
tfi
−Wω

tfi−1

]
(6)

where uωi is the realization of an nfactor-dimensional vector of uniformly distributed random
variables in [0, 1) in path ω, Φ−1(x) is the inverse cumulative standard normal distribution
function operating element wise on x, ξωi is the realization of an nfactor-dimensional vector of

standard normal random variables in path ω, Ŵω
t is the realization of an nfactor-dimensional

1Note that other higher order numerical integration schemes such as trapazoidal or Simpson’s rule can instead
be used, but for simplicity and ease of notation they are not explored here.

2An exact stepping scheme exists for this system of SDEs, as described in Ng, Peterson, and Rodriguez (2011)
[23]. However, we use the Euler scheme for the simplicity of exposition and to localize dependencies of the risk
factors to bumps to model parameter volatilities.
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vector of independent Wiener processes at time t and in path ω with Ŵ0 = 0, 0 is an nfactor-
dimensional vector of zeros, ∆i = tfi − t

f
i−1, Wω

t is the realization of an nfactor-dimensional

vector of correlated Wiener processes as defined above in path ω, and
√
R is the nfactor by

nfactor matrix containing the square root of the correlation matrix in the eigen decomposition
sense3. In a pathwise simulation, the portfolio values and collateral balances are computed in
step with the risk factors.

Define X as the nfactor by nfixing matrix of risk factor values at all future required time
steps X = [Xtf0

, Xtf1
, . . . , Xtf

nfixing
] and ξ as the stacked d = nfactornfixing-dimensional vector

of standard normal random variables ξ = [ξT1 , ξ
T
2 , . . . , ξ

T
nfixing ]T . Define the function from the

normal random variables ξ to the risk factor values X as X = g(ξ), where we suppress the
dependence on the model parameters A, f and Σ, and initial risk factor values X0 for notational
convenience. Write the CVA payoff in equation (3) as a function π of the risk factor matrix

X, π(X) ≡
∑m−1
i=0 πi(X) and πi(X) ≡ (1 − Rc)

Nt0
Nti+δ

max(Vti+δ + Fti,ti+δ − Cti+δ, 0)P (τ b >

ti+1)P (ti ≤ τ c < ti+1). Now, by expressing the standard normal variables in terms of d-
dimensional vector of uniform random variables u = [uT1 , u

T
2 , . . . , u

T
nfixing ]T we can explicitly

approximate CVA as a (Riemann type) sum over the unit hypercube [0, 1)d:

CVAt0 ≈ CVAMC
t0 =

1

n

n−1∑
ω=0

π(g(Φ−1(uω))). (7)

Thus the computation of CVA reduces to an integration problem over the unit hypercube [0, 1)d.
In this paper we discuss and compare random, deterministic, and hybrid sampling methods to
generate realizations of the risk factor matrix X. It turns out that, for some payoffs, through a
suitable choice of the map u→ X, the (effective) dimensionality of the integration problem can
be reduced to less than the nominal dimension d. Such a choice can benefit QMC in particular,
leading to faster and/or more accurate CVA estimates. The remainder of this section introduces
the various MC concepts under investigation in more detail.

2.1 Classical Monte Carlo

In classical MC uω is generated to be independent from each other and all earlier draws using
a pseudo random number generator, such as the Mersenne Twister algorithm (Matsumoto
and Nishimura (1997) [21]). The strong law of large numbers guarantees that if the payoff is
integrable the approximation approaches the true answer as n approaches ∞ with probability
1. If the payoff is additionally square integrable, the standard deviation of the MC estimate
is equal to the standard deviation of the payoff divided by the square root of the number of
replicas n:

σMC,n = σPayoffn
− 1

2 . (8)

Furthermore, the central limit theorem guarantees that the distribution of the MC estimate con-

verges to the normal distribution as the number of replicas approaches∞,
√
n
(
CVAMC − CVA

) d−→
N
(
0, σ2

Payoff

)
, where N (µ, σ2) is the normal distribution with mean µ and variance σ2. This

allows us to place confidence intervals around the MC estimates. In practice, σ2
Payoff is not

known, but can be easily estimated along with the mean using the sample variance: σ2
Payoff ≈

1
n−1

∑n−1
ω=0

(
π(g(Φ−1(uω)))− CVAMC

)2
.

3Principal Component Analysis (PCA) can be applied as an additional step to reduce the dimensionality of
the problem, which is expected to yield improvements for the QMC methods. In our test cases, none of the
eigenvalues were small enough to merit such a reduction.
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2.2 Classical Monte Carlo with Antithetic Sampling

Classical Monte Carlo with antithetic sampling (AMC) attempts to reduce the variance of
the estimator by introducing negative dependence between pairs of random replications. As-
suming n to be an even number, draw n/2 uniformly distributed random variables uω for
ω = 0, 1, . . . , n/2−1 and take the mirror image of each to obtain the antithetic samples 1−uω,
also valid uniformly distributed random variables. Appending the two sequences together re-
sults in n samples, where each of the antithetic pairs is perfectly negatively correlated.

In order to use the standard error formula (8) that applies only to n independent samples,
we can average the payoff of the antithetic pairs first to obtain n/2 independent samples, and
then average these to obtain the AMC estimate:

CVAAMC =
1

n

n/2−1∑
i=0

π(g(Φ−1(uiAMC))) + π(g(Φ−1(1− uiAMC))) (9)

The standard deviation of the AMC estimate is then given by a formula analogous to (8) but
with a reduced set of replications:

σAMC,n =
√

2σPairsn
− 1

2 . (10)

Comparing equations (8) and (10), it is clear that the convergence rate is unchanged. However,
the constant

√
2σPairs is smaller than σpayoff if the payoffs evaluated over the antithetic pairs

are negatively correlated.

2.3 Quasi-Monte Carlo

Instead of attempting to generate a sequence of pseudo-random numbers in [0, 1)d that tends to
cluster, QMC methods use low-discrepancy sequences (LDS) {uωLDS}nω=0 that are constructed to
fill the unit hypercube more evenly. The remaining mechanics of the QMC method are identical
to those of classical Monte Carlo:

CVAQMC =
1

n

n−1∑
ω=0

π(g(Φ−1(uωLDS))) (11)

A result based on the Koksma-Hlawka inequality states that the integration error of QMC
methods is proportional to lnd(n)/n. Thus, for low-dimensional problems, QMC can provide
a quadratic speed-up compared to MC methods, but the minimum number of points required
to achieve this accelerated convergence rate grows exponentially with d, a bound that can
be prohibitively high for high-dimensional integrands. It turns out, however, that even for
many high-dimensional problems QMC methods can still achieve a higher convergence rate
than classical MC with a feasible number of sample paths. In fact, what has been repeatedly
observed is that the expected error (see Section 2.5) follows a power law [2, 6, 10],

σQMC,n ≈ αn−β , (12)

where β, estimated empirically, is found to be close to 1 for many integrands. This accelerated
convergence rate is often attributed to the low so-called effective dimension of the problem4,
which is found to be a better predictor of the QMC error bound that the nominal dimension d

4Without getting too technical, the effective dimension de describes the (effective) dependence of a function
f(x1, ..., xd) on its nominally d dimensional argument. It can be viewed as the maximum dimensionality of
function arguments appearing in a sufficiently accurate low order analysis of variance (ANOVA) expansion of f
when viewed as a random function. Sometimes a coordinate transformation g(y1, ..., yd) = f(h(y1, ..., yd)) can
help reduce the effective dimension of the problem at hand. Suffice to say that 0 ≤ de ≤ d. See Caflisch et al.
(1997) [6] and appendix D for more details.
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(see Kucherenko and Shah (2007) [16] and Kucherenko et al. (2011) [17]). It turns out that for
many payoffs encountered in practice, especially in financial engineering, the effective dimension
is or can be reduced to be significantly less than the nominal dimension.

Of the low-discrepancy sequences available, Sobol sequences (Sobol’ (1967) [28]) have been
shown to have superior convergence properties, relatively robust uniformity properties across
dimensions, and are very efficient to generate (see Glasserman (2004) [10], and Jackel (2002)
[13] for example). Sobol sequences, however, are not unique and require a set of direction num-
bers to initialize the sequence. The choice of direction numbers greatly affects the efficiency
of the method (Jackel (2002) [13]). We use direction numbers provided by BRODA [4] com-
mercially that allow for the generation of sequences in up to 65,536 dimensions, sufficient for
most practical applications in financial engineering. The direction numbers were chosen such
that the resulting sequence satisfies Sobol’s uniformity property A and any projection onto five
adjacent dimensions also satisfies Sobol’s uniformity porperty A′. Property A states that if
we split each [0, 1)-interval of the d-dimensional unit hypercube into two equal intervals, i.e.
[0, 0.5) and [0.5, 1), making 2d bins, then the first 2d elements of the sequence will fall into
unique bins, the next 2d elements fall into unique bins, etc. Property A′ is similar, but rather
than subdividing each interval equally into two, we subdivide them equally into four.

2.4 Quasi-Monte Carlo and Brownian Bridge

The effective dimension of a problem is not fixed and can be reduced by reformulating the payoff
and/or risk factor simulation. The Brownian bridge path construction is a common example,
one that has been shown to reduce the sensitivity of the effective dimension to the number of
time steps used in the simulation and is thus a promising technique for CVA. The Brownian
bridge discretization makes use of the Brownian bridge formula:

Ŵt = Ŵs +
t− s
u− s

(
Ŵu − Ŵs

)
+ ξt

√
(t− s)(u− t)

u− s
(13)

where s < t < u and ξt ∼ N (0, 1), to simulate each independent Brownian motion in a non-
chronological order such that each step explains a maximum amount of remaining variation.
Assume we need the nfactor-dimensional vector of Brownian motions at M equal time steps,
and that M is a power of 2. The initial value of W0 = 0. Next, we generate ŴM as ŴM =

√
Tξ0

where ξ0 is an nfactor-dimensional vector of normal independent random variables. Formula
(13) is then used to create WM/2 from W0, WM and ξ1, then WM/4 from WM/0, WM/2, and
ξ2, then W3M/4 from WM/2, WM , and ξ3, and so on. See Caflisch et al. (1997) [6] for the
original description. Each successive random draw adds finer and finer details to the path,
increasing the dependence on fewer and earlier indexed uniform variables, and reducing the
effective dimension for payoffs that primarily depend on the overall shape of the Brownian
path.

Once obtained, the nfactor by nfixing matrix of Brownian motions Ŵ are used in a regular
chronological simulation of the risk factors. Iterate from i = 1, 2, . . . , nfixing:

Wtfi
= Wtfi−1

+
√
R
[
Ŵtfi
− Ŵtfi−1

]
(14)

Xtfi
= Xtfi−1

+
[
AXtfi−1

+ ftfi−1

]
∆i + Σtfi−1

[
Wtfi
−Wtfi−1

]
(15)

We define the end-to-end risk factor simulation using the Brownian bridge discretization func-
tion from the normal random variables ξ to the future risk factor values X as XBB = BB(ξ).
The Brownian bridge QMC CVA estimate is then equal to:

CVAQMC,BB =
1

n

n−1∑
ω=0

π(BB(Φ−1(uωLDS))) (16)
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Other Brownian path constructions are available, including PCA of the entire risk factor system
for all fixing dates [10, 13], but we do not explore them further in this paper.

2.5 QMC Error Estimates

In the classical MC framework, the standard error over n paths is given by equation (8) or (10),
depending on whether the method of antithetic variates is used or not. In the QMC framework,
on the other hand, as a result of the inter-dependence between consecutive elements of the
low-discrepancy sequence, no formula of practical use exists for calculating the standard error
from the sample payoff replications.

Instead, it is usually estimated empirically (see Caflisch et al. (1997) [6] and Bianchetti et
al. (2015) [2]) by evaluating the CVA k times using n non-overlapping elements of the low-
discrepancy sequence, and taking the standard deviation of these k CVA estimates CVAQMC

0,n,

CVAQMC
1,n, . . ., CVAQMC

k−1,n where CVAQMC
j,n = 1

n

∑j+n−1
ω=j π(g(Φ−1(uωLDS))). The empirical expected

error, or root mean squared error (RMSE), using n simulations is then defined as:

σ̂QMC,n =

√√√√ 1

k − 1

k−1∑
j=0

(
CVAQMC

j,n − CVA
)2

(17)

where CVA is the “exact” value, estimated with a very large number of simulation paths n∞.
The procedure is repeated l times using n0 < n1 < . . . < nl−1 simulations (all powers of two to
ensure smooth convergence of Sobol’ sequences) to obtain estimates for σ̂QMC,n0

, σ̂QMC,n1
, . . . , σ̂QMC,nl−1

.
Then, assuming a power law of convergence (see equation (12)), the parameters α and β are
estimated using linear least squares regression of the natural log of the empirical error onto the
natural log of the paths5. The same procedure can be used to compute the expected error of
classical MC with and without antithetic sampling, but now each sample would be indepen-
dent and normally distributed for larger n. This estimate approaches the analytic results in
equations (8) or (10) as the number of trials reaches infinity.

2.6 Randomized Quasi-Monte Carlo

Randomized quasi Monte Carlo (RQMC) is a technique for obtaining independent estimates
from multiple QMC runs that can be used to estimate the standard deviation of the error and
also potentially increase the optimal convergence rate (for an overview see Glasserman (2004)
[10]). A low-discrepancy sequence {uωLDS}n−1ω=0 is randomized k times to produce k independent
sequences {yωj }

n−1
i=0 of uniformly distributed points in [0, 1)d, where j = 0, 1, . . . , k − 1. Per-

forming QMC evaluations over k independent trials using these sequences leads to estimates
CVARQMC

0,n , CVARQMC
1,n , . . ., CVARQMC

k−1,n where CVARQMC
j,n = 1

n

∑n−1
ω=0 π(g(Φ−1(yωj ))). The standard

deviation of the error when using n simulations is then equal to:

σ̂RQMC,n =

√√√√ 1

k − 1

k−1∑
j=0

(
CVARQMC

j,n − CVA
)2

(18)

where CVA can be set to the “exact” value, estimated with a very large number of simulation
paths n∞ as before, or to the mean of the k estimates. Proceeding as in the previous section,
standard deviation estimates σ̂RQMC,n0 , σ̂RQMC,n1 , . . . , σ̂RQMC,nl−1

for difference numbers of simulation
paths n0 < n1 < . . . < nl−1 can be utilized to identify the power law dependence of the RQMC

5According to this definition, we know that σ̂QMC,1 will converge to the payoff standard deviation as k ap-
proaches infinity. An alternative modelling choice is then to impose this restriction on the convergence formula,
and only solve for β using linear regression with a known intercept of the log of the payoff standard deviation.
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error on the simulation path number. Least squares regression is used to estimate the power
law parameters describing the error as a function of the number of paths.

Several techniques exist for randomizing {uωLDS}n−1ω=0 to obtain {yωj }
n−1
ω=0 for j = 0, 1, . . . , k−1.

We focus our attention on the linear permutation of digits method by Matousek (1998) [20].
As a more implementation-efficient approximation to the Owen (1997) [25] full scrambling
algorithm, the linear permutation of digits maps the binary representation of x = 0.a1a2 . . . to
y = 0.b1b2 . . . using

bl =

l∑
k=1

hklak + gl mod 2 (19)

with hkl and gl chosen randomly and independently from {0, 1} and hll = 1. Note that, for a
particular dimension, the same permutation parameters are used across all the elements in the
sequence.

A remarkable result by Owen (1997) [25] is that for sufficiently smooth integrands, RQMC
using a particular class of randomization schemes, among which is the linear permutation of
digits, can lead to integration errors of order O(n−3/2). Although the smoothness condition
of Owen’s theorem does not hold in most derivative pricing applications (Glasserman (2004)
[10]), and the theoretical enhanced convergence rate may not kick in for feasible sizes of n, it
has been observed to improve the convergence rate in several financial applications (Caflisch et
al. (1997) [6], and Tan and Boyle (2000) [30] for example).

3 Numerical Experiments

We create uncollateralized portfolios with 1, 6, and 11 single currency pay fixed receive float
swaps, each swap in a particular portfolio being in a unique currency. The foreign notionals
are set to the corresponding spot FX rate as of the simulation start date. All swap legs have
a one year frequency. We create several variations of each portfolio, varying the moneyness
from far-in-the-money (fixed rates set to par minus 300bp), in-the-money (fixed rates set to par
minus 100bp), at-the-money, out-of-the-money (fixed rate set to par plus 100bp), to far-out-of-
the-money (fixed rate set to par plus 300bp). All trades mature in ten years.

Closed form solutions are used to value the swaps forward in time as a function of the zero
bonds and exchange rates, which are simulated based on a cross currency extension to the Hull-
White model [12]. The short rate in each currency is controlled by one mean reverting normally
distributed factor and the exchange rate between a foreign currency and the domestic currency
is governed by a log-normal random variable. Credit events are assumed to be independent of
the exposure profiles and numeraire, and thus do not directly affect the simulation. See section
2 for details. In total, the 1-currency portfolio depends on 1 factor, the 6-currency portfolio on
11 factors, and the 11-currency portfolio on 21 factors. Exposure dates are quarterly spaced,
with additional exposures added the day of and the day after the underlying swaps’ cash flows.

The model is calibrated to market data as of August 1st, 2016. The mean reversions for
each short rate process are explicitly input at 0.03. The short rate volatility in each currency is
parameterized as piecewise constant and calibrated to a diagonal of co-terminal swaptions from
an at-the-money (ATM) swaption volatility matrix that matches the maturity of the swap being
analyzed. The discontinuities of the short rate volatility are equal to the swaption maturities.
The FX volatility is also parameterized as piecewise constant and calibrated to a strip of ATM
FX options. The discontinuities of the FX volatility are set equal to the expiry of the FX
options. Correlations are estimated historically.

We compute CVA level and sensitivities to parallel shifts of the curves. For each currency
(except the domestic), we compute four sensitivities: IR Delta (a parallel one basis point shift
to the yield curve), IR Vega (a parallel one percent shift to the swaption volatility matrix), FX
Delta (a one tenth of a percent shift to the spot FX rate), and FX Vega (a parallel one percent
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shift to the implied FX volatility curve). Last, we compute CR Delta (a parallel shift of one
basis point to the credit curve), assumed to be the same for all portfolios. Portfolios depending
on a different number of currencies consequently require a different number of sensitivities: the
1-currency domestic portfolios require 3 sensitivities (1 CR Delta, 1 IR Delta, and 1 IR Vega),
the 6-currency portfolios require 23 sensitivities (1 CR Delta, 6 IR Deltas, 6 IR Vegas, 5 FX
Deltas, and 5 FX Vegas), and the 11-currency portfolios require 43 sensitivities (1 CR Delta,
11 IR Deltas, 11 IR Vegas, 10 FX Deltas, and 10 FX Vegas). Results are presented as the
difference from the base, which when divided by the corresponding bump size are equal to the
forward finite difference estimates of the first derivatives.

As outlined above, we apply several Monte Carlo simulation schemes, using a basic Euler
risk factor stepper, to estimate CVA and CVA sensitivities. To summarize, the five Monte
Carlo variations are as follows:

1. Classical Monte Carlo (MC): Employs the Mersenne Twister pseudo random number
generator to produce n uniformly distributed random vectors. See section 2.1 for details.

2. Classical Monte Carlo with Antithetic Sampling (AMC): Employs the Mersenne
Twister pseudo random number generator to produce n/2 uniformly distributed random
vectors (n even). Another set of n/2 uniformly distributed random vectors are formed
via reflection of the first set. See section 2.2 for details.

3. Quasi-Monte Carlo (QMC): Utilizes Sobol’ sequences with BRODA direction numbers
[4] to generate n low-discrepancy vectors. See section 2.3 for details.

4. Quasi-Monte Carlo + Brownian Bridge (QMC+BB): Utilizes Sobol’ sequences
with BRODA direction numbers to generate n vectors of low-discrepancy vectors, and the
Brownian bridge discretization to map these to vectors of independent Wiener processes.
See section 2.4 for details.

5. Randomized Quasi-Monte Carlo + Brownian Bridge (RQMC+BB): Similar to
QMC+BB but now using randomized Sobol’ sequences based on the linear permutation
of digits from Matoušek (1998) [20]. See section 2.6 for details.

To provide a succinct measure of comparison we estimate for each of the portfolios, cal-
culation types, and the five Monte Carlo variants, the expected number of paths needed to
match the expected error of classical MC when using 10,000 paths. We refer to this measure
as the equivalent paths6. It is found by assuming the error for each payoff and methodology
follows a power law of convergence, the parameters of which are estimated empirically. Using
these equations we solve for the number of paths that are required to match the classical MC
error with 10,000 paths (see section A for details). From the equivalent paths measure we also
calculate the acceleration factor as

acceleration factor =
10, 000

# of equivalent paths
. (20)

4 Results

In this section we compare the performance of various Monte Carlo methods (AMC, QMC,
QMC+BB, and RQMC+BB) for calculating CVA and CVA sensitivities on various portfolios of
10-year payer interest rate swaps7 in 1, 6, and 11 currencies; there is one swap in each currency,

6For simulation methods involving QMC, i.e. QMC, QMC+BB, and RQMC+BB, it is recommended that
the number of paths to use be a power of 2.

7Note that the CVA results on the portfolio of payer swaps can equivalently be viewed as DVA results on the
portfolio of receiver swaps.
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Figure 1: Acceleration factor as a function of the swap spread (in bp) above par rate. The calculations
involve CVA level and sensitivities for a 1-currency portfolio containing one 10-year payer swap in
each currency. Local model results are shown for AMC (blue), QMC (red), QMC+BB (yellow), and
RQMC+BB (purple).

with the swap rates set to par plus a given spread that is varied from -300bp (creating a far-
in-the-money portfolio) to 300bp (creating a far-out-of-the-money portfolio). In general, for
the n-currency portfolio there is 1 CVA level and CR Delta calculation, n IR Delta and Vega
calculations, as well as n − 1 FX Delta and Vega calculations, for a total of 4n calculations.
When showing the sensitivity results for the multi-currency portfolios, the acceleration factor
is obtained from the averaged equivalent paths over the 2n − 1 IR/FX Delta and the 2n − 1
IR/FX Vega results, with equal weighting given to each.

Figure 1 shows that, for CVA level and CR Delta calculations on the 1-currency far-in-
the-money portfolio, AMC and QMC both have roughly equal acceleration factor between 30
and 40, but as the portfolio grows more out-of-the-money, QMC performance deteriorates less
quickly than AMC, so that with the swap rate set to par plus 300bp, QMC needs roughly
half the number of paths as AMC and classical MC. Using Brownian bridge to reduce the
effective dimension of the problem, QMC+BB and RQMC+BB achieve a significantly higher
acceleration rates of 50 and 150, respectively, as well as slower deterioration rates. The clear
improvement in efficiency across the QMC methods for in-the-money portfolios may be caused
by the payoff becoming more separable as flooring the portfolio at zero rarely happens, reducing
the effective dimension. This lowered effective dimension also seems to allow randomization to
further increase the efficiency of the simulation. We note that the increased complexity of IR
Delta and Vega calculations results in slower convergence rate across all methods.

Figure 2 shows the acceleration factor for CVA level and sensitivity results across the differ-
ent simulation methods for the 6-currency portfolio. Here, QMC offers little or no advantage
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Figure 2: Acceleration factor as a function of the swap spread (in bp) above par rate. The calculations
involve CVA level and sensitivities for a 6-currency portfolio containing one 10-year payer swap in
each currency. Local model results are shown for AMC (blue), QMC (red), QMC+BB (yellow), and
RQMC+BB (purple).

over AMC: as the portfolio moneyness decreases, the acceleration of the two schemes decreases
roughly equally. As in the single-currency case, RQMC+BB offers a higher acceleration rate
than QMC+BB for the far-in-the-money portfolio (acceleration factor of 80 vs 40 for the CVA
level and CR Delta), but as the portfolio moneyness decreases the two methods perform at par
(with a more modest acceleration factor of 4 or equivalent paths of 2500). On average, across
the 22 IR/FX Delta calculations, QMC+BB and QMC+BB have an acceleration factor of 30
and 40, respectively, when the swaps’ fixed rates are set to par minus 300bp, but decreases to
4 when the spread is increased to 300bp. For the IR/FX Vega calculations, the acceleration
factor of the two methods starts at 20 and 30, respectively, for the far-in-the-money portfolio
(spread of -300bp) and decreases to 3 for both as the swaps’ spread is increased to 300bp.

As we increase the portfolio size to include 11 swaps in 11 currencies, naturally the dimension
of the problem increases. As illustrated in Figure 3 QMC under-performs AMC across all
payoffs; in fact, the acceleration factor is under 1 for the out-of-the-money portfolios, meaning
that QMC requires more than 10,000 paths to match classical MC’s error at 10,000 paths.
One such example is the CR Delta calculation at 0 strike, requiring over 14,000 paths to reach
MC’s error at 10,000 paths (acceleration factor of 0.7). As shown in Figure 4 for CR Delta
calculations, the convergence plot of QMC for this payoff exhibits a plateau whereby as the
number of paths in the QMC calculation is increased from 512 to 8192, the standard error of
the simulated payoff decreases at a rate much lower than the rate implied by the first half of
the plot as the paths are repeatedly doubled from 2 to 512. However, as the number of paths
is increased from 8192 to 16384, the error dramatically drops. This effect, we hypothesize,
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Figure 3: Acceleration factor as a function of the swap spread (in bp) above par rate. The calculations
involve CVA level and sensitivities for an 11-currency portfolio containing one 10-year payer swap in
each currency. Local model results are shown for AMC (blue), QMC (red), QMC+BB (yellow), and
RQMC+BB (purple).

is caused by the “holes” in certain lower-dimensional projections of the Sobol’ sequences (see
Appendix B) that have a period of 8192. In other words, this plateauing effect hints at the
existence of regions of the unit hypercube that do not get uniformly filled, even at 8192 points;
for this particular payoff these regions seem to be important.

As for the smaller portfolio sizes, Brownian bridge results in a significant boost: for level
and CR Delta calculations the acceleration factor starts out at roughly 30 and 50 for QMC+BB
and RQMC+BB, respectively, in the far-in-the-money case at spread of -300bp, decreasing to
4 for both methods as the spread increases to the far-out-of-the-money limit of 300bp. For
IR/FX Delta and Vega calculations, the randomization makes little difference, most likely due
to increased dimension of the problem. The Brownian bridge discretization, however, leads to
a speed-up of 20 (12) times for the IR/FX Delta (Vega) calculations in the most optimal case,
but only an acceleration factor of 3 (2) in the worst case.

In summary, the CVA level and sensitivity results on the portfolio of payer swaps considered
in this section show that as the portfolio moneyness increases, the acceleration factor generally
increases across all simulation methods8. We believe this is caused by the payoff becoming
more symmetric and linear as the moneyness increases, since maxing at 0 is triggered less often
in equation (1). In these results we observe that QMC with Brownian bridge discretization
provides a significant advantage over AMC and the standard QMC. Randomization can provide
an additional boost, but most notably for the smaller in-the-money portfolios, while for larger,

8For DVA results on the same portfolio of payer swaps, the scenario is mostly reversed: the acceleration
factor generally decreases across all methods as the moneyness increases.
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Figure 4: Standard error vs number of paths for the CR Delta calculation over the 11-currency
portfolio.

more out-of-the-money portfolios the performance of RQMC+BB is at par with or slightly
worse than the non-randomized version, QMC+BB. Generally, the acceleration increases as
the portfolios grow more in the money, with IR/FX Delta and Vega calculations requiring on
average more paths than level and CR Delta calculations to reach the same level of accuracy.

Figure 5 compares the acceleration factor across the different random number generators
as the number of currencies c is increased, which in effect increases the problem dimension
by a factor of 2c − 1. As these plots show, for the payoffs considered here, the performance
of standard QMC can be very sensitive to the number of dimensions in the problem: for the
calculations on the single-currency portfolio QMC can lead to a significant speed-up over AMC;
however, with increasing number of currencies, this performance gain deteriorates quickly, so
that in the 11-currency portfolios QMC repeatedly under-performs AMC.

One way to lower the error in the QMC estimate (without using additional samples) is
to reformulate the problem so that the dependence of the integrand (payoff) on the random
variables is changed in such a way that the effective dimension of the problem is reduced.
Brownian bridge discretization achieves this by generating the Brownian path in a different
order9 than the standard chronological one. As illustrated in Figure 5, with increasing portfolio
size, the acceleration factor of QMC+BB and RQMC+BB on the CVA level and CR Delta
calculations deteriorates by a much smaller factor compared to standard QMC; randomization
offers some advantage, mainly on smaller portfolios.

The results discussed above apply to portfolios simulated using the local model. In practice,
a global model may be used instead, in which the number of simulated risk factors and the
simulation horizon is typically independent of particular trades, but depend on the make-up
of the entire portfolio. The next section discusses the impact of the various Monte Carlo
approaches in the global model setting.

4.1 Global Models

For operational reasons and potentially entity level calculations (required to compute some
flavours of FVA), it is common to use a global model, capable of simultaneously dealing with all
counterparty netting sets. Denote the number of factors needed for the global model as ng and
the number of factors needed for the counterparty as nc, where we usually have nc � ng. In

9Other orderings are possible, see for instance Lin and Wang (2008) [19].
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Figure 5: Acceleration factor as a function of the number of currencies in the portfolio, containing
one ATM 10-year payer swap in each currency. Local model results are shown for AMC (blue), QMC
(red), QMC+BB (yellow), and RQMC+BB (purple).

such cases, only nc risk factors from Xt are used in a particular counterparty simulation, but if
a global model is used, each of these depends on the weighted sum of ng random variables per
time step. In a 30-currency (ng = 59) global model as used for our test cases, the 1-, 6-, and
11-currency portfolios all depend on the same sequence of high-dimensional random vectors,
but with different weights, which results in increased the effective dimension of the problem,
and degraded performance across all QMC methods.

Another aspect of the global model is that it uses a common time horizon T across all
netting sets, which in practice is chosen to be the largest of the maturity dates. To analyze the
effect of switching from a local to global model, we set T = 50 years in our test cases, keeping
all trades the same as before: one 10-year payer swap in each currency. This increased time
horizon has two implications.

Firstly, since the risk factors are simulated in the T -forward measure, increasing T from
10 to 50 years changes the distribution of the numeraire and in turn that of the normalized
payoff10, which affects the performance of AMC as well as all QMC methods. We note that

10The variance in the distribution of the numeraire, i.e. discount factor D(t, T ), is zero at t = t0 and t = T ,
and achieves its maximum at some point t ∈ (t0, T ). Changing the time horizon T alters the distribution of the
numeraire, and depending on the nature of the payoff (e.g. CVA vs DVA or a payer swap vs receiver swap) and
its correlation with the numeraire, this change can increase (decrease) the variation in the normalized payoff,
resulting in increase (decrease) in the number of simulation paths required to achieve a given level of accuracy. In
fact, while for AMC and QMC the acceleration factor for CVA results generally deteriorate with increasing time
horizon, we found DVA calculations on the same portfolio of payer swaps exhibiting accelerated convergence.
Results for QMC methods involving Brownian bridge across CVA (DVA) calculation also generally deteriorate
(improve) with increasing time horizon, though the pattern is more erratic. We believe this is due to the fact
that varying T results in different indices of Sobol’ dimensions, having different projection properties, being used
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another choice of numeraire that removes this dependence, such as the risk-neutral measure,
may be a better candidate for a global model simulation11.

Secondly, since the Brownian bridge discretization depends on the simulation horizon T ,
switching to the global model would mean that, on average, higher number of random variables,
and later-indexed dimensions of the Sobol’s sequence are used to simulate the Wiener process
at each point in the (0, 10yr) time frame. Both these effects are expected to decrease the
acceleration factor of these methods compared to the local model.

Figure 6: Acceleration factor as a function of the swap spread (in bp) above par rate. The calculations
involve CVA level and sensitivities for a 1-currency portfolio containing one 10-year payer swap in each
currency. Local and global model results are shown in dotted and solid lines, respectively, for AMC
(blue), QMC (red), QMC+BB (yellow), and RQMC+BB (purple).

Figures 6–8 show the CVA level and sensitivity results on the 1-, 6-, and 11-currency port-
folios, respectively, calculated using this global model (solid lines). Comparing these to the
local model results (dotted lines), we see that the acceleration factor of all methods decreases
as we switch from the local to the global model, with the change being more pronounced on
the smaller-size portfolios. The degradation in AMC acceleration is solely attributed to the
use of the T -forward measure and the payoff becoming less symmetric as T is increased from
10 years (in the local model) to 50 years (in the global model). QMC performance, however,
has deteriorated the most; it often under-performs AMC and even classical MC in some cases
(acceleration factor lower than 1). This is true even in the single-currency portfolio in which

to calculate the Wiener process for the same time frame, e.g. (0, 10yr).
11Our simulation results with the risk-neutral measure show that for CVA calculation, under the risk-neutral

measure, in contrast to the T -forward measure, AMC and standard QMC are statistically unaffected by purely
changing the change in the time horizon. Under such a measure, the deterioration in switching from a local to
global model would solely be attributed to the increase in the number of factors as the number of currencies
simulated is increased to 30.
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Figure 7: Acceleration factor as a function of the swap spread (in bp) above par rate. The calculations
involve CVA level and sensitivities for a 6-currency portfolio containing one 10-year payer swap in each
currency. Local and global model results are shown in dotted and solid lines, respectively, for AMC
(blue), QMC (red), QMC+BB (yellow), and RQMC+BB (purple).

QMC outperformed AMC by a significant margin in the local model. In fact, as depicted in
Figure 6, in the far-out-of-the-money portfolio, with the swaps’ fixed rate at par plus 300bp,
QMC’s acceleration is below 0.7, requiring roughly 15,000 equivalent paths for CVA level and
sensitivities.

As alluded to above, the reason behind this degradation in QMC performance is two-fold:
increasing the time horizon T from 10 to 50 years combined with the use of T -forward measure,
as well as simulating 30 currencies (instead of 1, for instance, in the single currency portfolio)
directly contributes to a significant increase in the number of problem dimensions. As a result,
the adjacent dimensions of the Sobol’ sequence that have a desirable uniformity property12 are
not utilized effectively to simulate interdependent factors in the model.

In addition to the above two factors, QMC+BB and RQMC+BB performance is further
influenced negatively by the increase in simulation time horizon as more and later Sobol’ di-
mensions are used to simulate the portion of the Brownian motion within the 10-year period
(e.g. the first two random variables simulate W50yr and W25yr in the global model instead of
W10yr and W5yr in the local model).

As illustrated in Figure 9, AMC results are insensitive to the number of currencies in the
portfolio. This is because the changes in weights assigned to the random variables is incon-
sequential for MC, as the convergence rate is fixed at 1/2. The acceleration factor for QMC,
QMC+BB, and RQMC+BB also remains roughly unchanged for different-size portfolios as the

12The BRODA[4] SobolSeq65536 was constructed such that each adjacent set of five dimensions satisfies
property A′, see Sobol’ et al. (2012) [29].
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Figure 8: Acceleration factor as a function of the swap spread (in bp) above par rate. The calculations
involve CVA level and sensitivities for an 11-currency portfolio containing one 10-year payer swap in
each currency. Local and global model results are shown in dotted and solid lines, respectively, for
AMC (blue), QMC (red), QMC+BB (yellow), and RQMC+BB (purple).

changes in weights is not expected to significantly alter the effective dimension of the prob-
lem. We believe any observed difference is due to chance in the sense that the different set of
weights used for the 1-, 6-, and 11-currency portfolios causes a particular dependence on the
set of dimensions of the Sobol’ sequence that can have different uniformity properties. We note
that in the global model the 1-trial randomization in RQMC+BB does not appear to offer any
advantage over QMC+BB.

4.2 Number of Time Steps

We now explore the impact of using more time steps in the risk factor simulation while holding
the number of exposure dates fixed. Using a local model, we calculate CVA of a portfolio
consisting of a single ATM 10-year payer swap, and increase the number of time steps from 66
to 3,653. The net effect is to use more random variables, increasing the nominal dimension of
the problem.

As Figure 10 shows, while AMC is unsurprisingly unaffected by the increase in the number
of time steps, QMC’s performance steadily diminishes. Note, however, that as the number of
time steps increases from 750 to 3650 the acceleration factor for QMC decreases by a relatively
small amount. This indicates that the number of time steps does not correlate directly with the
number of effective dimensions of the problem, even for QMC. Impressively, QMC+BB shows
little dependence on the number of time steps, while the results for RQMC+BB are rather
erratic.
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Figure 9: Acceleration factor as a function of the number of currencies in the portfolio, containing
one ATM 10-year payer swap in each currency. Local and global model results are shown in dotted and
solid lines, respectively, for AMC (blue), QMC (red), QMC+BB (yellow), and RQMC+BB (purple).
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Figure 10: Acceleration factor as a function of the number of time steps across various simulation
methods: AMC (blue), QMC (red), QMC+BB (yellow), and RQMC+BB (purple). The calculation
involves CVA calculation for a portfolio containing one ATM 10-year payer swap using a local model.

5 Collateralized Counterparties

Consider the CVA to a collateralized counterparty with daily margining, zero thresholds and
zero minimum transfer amounts. Assume no flows are paid between the counterparty default
date τc and the portfolio settlement date τc + δ and that collateral and cash are invested in the
numeraire asset:

CVA = (1−Rc)
∫ T

0

E0

[
N0

Nt+δ
max

(
Vt+δ +

∑
t≤tcj<t+δ

Nt+δ
Ntcj

CFtcj −
Nt+δ
Nt

Vt, 0

)]
P (τ b > t)dP (τ c < t), (21)

where CFt are the netted primary portfolio cash flows at time t, and {tcj} are the cash flow
dates. We consider two methods for estimating this CVA: 1) margin period of risk adjusted
exposure dates, discussed in Section 5.1, and 2) portfolio interpolation using Brownian bridge,
discussed in Section 5.2.

5.1 Margin Period of Risk Adjusted Exposure Dates

In this method we evaluate the portfolio at the original exposure dates ti as before, but now in
addition we evaluate the portfolio value at the portfolio settlement dates tsi = ti + δ:

CVA ≈ N0

n
(1−Rc)

m−1∑
i=0

n−1∑
ω=0

[
max

(
V ωti+δ
Nω
ti+δ

+
∑

ti≤tcj<ti+δ

CFωtcj
Nω
tcj

−
V ωti
Nω
ti

, 0

)]
P (τ b > ti+1)P (ti ≤ τ c < ti+1). (22)

This is similar to the classical margin period of risk model with a coarse grid look back discussed
in Andersen et al. (2017) [1], but here we use a coarse grid look forward. Results for portfolios
of 1, 6, and 11 currencies containing one ATM 10-year payer swap in each currency and a
margin period of risk δ of 10 business days are presented in Figure 11.
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Figure 11: Acceleration factor as a function of the number of currencies in the portfolio, containing
one ATM 10-year payer swap in each currency. The portfolio is fully collateralized, has a 10 business
day margin period of risk, and is valued on both the exposure dates and the margin period adjusted
dates. Local and global model results are shown in dotted and solid lines, respectively, for AMC (blue),
QMC (red), QMC+BB (yellow), and RQMC+BB (purple).

For the local model results (shown in dotted lines), standard QMC (with chronological
discretization) outperforms all other methods in the single-currency case; results for larger
portfolios are more or less the same across the different QMC schemes. Comparing this figure
with Figure 5, we note that, in the local model, standard QMC performs much better on
collateralized portfolios than without.

This can occur because rather than the exposure primarily depending on the portfolio value
(as in the uncollateralized case), the collateralized exposure primarily depends on the difference
in the portfolio value over the margin period of risk. For the single-currency single-factor case
with the chronological discretization, the difference is captured by one Brownian increment,
which is computed with a simple inverse cumulative normal transform of one Sobol’ variable.
Since the marginal of all Sobol’ variables are perfectly uniform when using binary segments
of the sequence (see Appendix B), this portion of the payoff is computed optimally. On the
other hand, for the uncollateralized case, the portfolio value depends on the weighted sum
of the inverse cumulative normal transform of several Sobol’ variables from time 0 to t, the
distribution of which may be highly non-uniform. For the 6- and 11-currency portfolios, in the
collateralized case, it is the weighted sum of the adjacent 11 and 21 dimensions, respectively,
of the Sobol’ sequence that is used to calculate the difference in the portfolio value over the
margin period of risk. Thus, the number of dimensions involved in the sum is still lower than
that of the uncollateralized portfolio. This could explain why standard QMC performs better
on the collateralized portfolios in the local model.
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We also note that Brownian bridge discretization can actually increase the effective dimen-
sion of payoffs, such as collateralized derivatives that depend on the Brownian increments. But
as is clear from equation (21), the calculation of the CVA depends also on the numeraire level
value. Hence, while Brownian bridge negatively influences the calculation of the terms within
the max function, it improves the calculation of the numeraire. In addition, as explained above,
the effectiveness of QMC on simulating the collateralized payoffs decreases with increasing num-
ber of currencies as the payoff becomes dependent on more adjacent Sobol’ dimensions. As a
result, we see from Figure 11 that while QMC outperforms QMC+BB on the 1-currency portfo-
lios in the local model, the situation reverses for the higher dimension portfolios. We note that
this is inline with the equivalence principle of Wang and Sloan (2001) [31], i.e the performance
of the Brownian bridge or any other discretization scheme depends on the particular payoff it
is applied to.

While Brownian bridge discretization negatively affects the collateralized portfolio results in
the local model, the method still proves effective in the global model case: both QMC+BB and
RQMC+BB perform roughly at par across the different portfolio sizes and outperform all other
simulation methods. Standard QMC results are at par or worse than AMC (and even classical
MC in some cases); we believe this is because the special A′ uniformity property that holds
across every adjacent 5-dimension of the (BRODA) Sobol’ sequence (see Sobol’ et al. (2012)
[29]) cannot be utilized as effectively as in the local model to estimate the payoff.

5.2 Portfolio Interpolation using Brownian Bridge

Equation (22) requires potentially twice as many portfolio evaluations as an uncollateralized
portfolio and thus can take twice as long to compute. An optimization, described by Pykhtin
(2009) [27] and similarly by Andersen et al. (2017) [1], avoids the additional valuations by using
a Brownian bridge to interpolate the portfolio value at time t+ δ from the simulated portfolio
values at the original time grid t. In addition to the computational savings by reducing the
number of portfolio evaluations, this method has the added benefit that a large portion of the
payoff variation can be described by one random variable per time step, an important step to
improve the effectiveness of QMC methods. To this end, rewrite the CVA payoff of equation
(21) in terms of a martingale:

CVA = (1−Rc)
∫ T

0

E0

[
N0

Nt
max

(
M t
t+δ −M t

t , 0
)]
P (τ b > t)dP (τ c < t), (23)

where

M t
t+δ =

Nt
Nt+δ

Vt+δ +
∑

t≤tcj<t+δ

Nt
Ntcj

CFtcj .

Simulate the martingale to the original exposure dates t, and then use a Brownian bridge
interpolation technique to find the martingale realizations at the settlement dates t+ δ. If we
assume the volatility of the martingale is piece-wise constant and deterministic over each time
interval13, it can be estimated from the sample standard deviation of the martingale increment,
denoted as σ̂Mi , and CVA can be estimated as:

CVA ≈ N0

n
(1−R)

m−1∑
i=0

n−1∑
ω=0

[
1

Nω
ti

max

(
∆M ti,ω

ti+δ
, 0

)]
P (τ b > ti+1)P (ti ≤ τ c < ti+1) (24)

13The variance of the martingale over time period i could be estimated by regressing the square of the change
over that time bucket onto a suitable basis expansion of the value of the martingale itself at the left hand side of
the interval, although, in the test cases we consider in this paper, we find the assumption of state-independent
volatility to be reasonable.
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where

∆M ti,ω
ti+δ

=

(
M ti,ω
ti+1
−M ti,ω

ti

)
δ

∆i
+ σ̂Mi Φ−1(uωi )

√
δ(∆i − δ)

∆i
, (25)

uωi is a scalar uniform random variable for path ω and time bucket i, independent of all other
uniform random variables used to simulate the risk factors underlying the model, and ∆i =
ti+1 − ti. In all Monte Carlo methods we take the m additional uniform dimensions from the
end of the sequence, after all uniforms required for the risk factor simulation have been used.

Figure 12: Acceleration factor as a function of the number of currencies in the portfolio, containing
one ATM 10-year payer swap in each currency. The portfolio is fully collateralized, has a 10 business
day margin period of risk, and is valued only on the exposure dates and uses the Brownian Bridge
technique to estimate value on the margin period adjusted dates. Local and global model results are
shown in dotted and solid lines, respectively, for AMC (blue), QMC (red), QMC+BB (yellow), and
RQMC+BB (purple).

Test results for the same set of portfolios as before but using the Brownian bridge portfolio
interpolation method are presented in Figure 12 for the local (dotted) and global models (solid).
Comparison with Figure 11 shows that this technique significantly improves the QMC acceler-
ation factor so that it now outperforms AMC on most test cases. QMC+BB and RQMC+BB
results are improved to a lesser degree, while AMC, as expected, is unaffected by this technique.

6 Conclusion

Our results above show that QMC works very well on small portfolios with in-the-money trades
and over relatively simple payoffs that are inherently of lower effective dimension compared
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to more complex calculations (i.e. sensitivity) over larger-size portfolios containing out-of-the-
money trades. This finding is consistent with conclusions of Morokoff and Caflisch (1995) [22]
on the performance degradation of QMC with growing dimensions in the problem.

Overall, QMC with the Brownian bridge discretization (QMC+BB) provides a significant
boost over both classical MC and MC with antithetic sampling (AMC), in particular on portfo-
lios of uncollateralized swaps, offering roughly an acceleration factor of 12 over the classical MC
counterpart in the cases tested (results based on average over all payoffs, spreads, and number
of currencies in the portfolio using the local model). The size of the improvement varies signifi-
cantly between portfolios, calculation types, and simulation models. With the global model, in
general, the efficiency of the methods involving QMC decreases as the adjacent dimensions of
the Sobol’ sequence cannot be used as effectively. In particular, the acceleration of QMC+BB
decreases from 12 to 3 when switching to a 30-currency global model with a 50-year simulation
horizon. Obtaining the optimal acceleration required reformulating the payoff to depend on
fewer and earlier indexed elements of the quasi-uniform variables (see Glasserman (2004) [10]).

The Brownian bridge risk factor discretization is less effective when used with collateralized
portfolios, where the margin period of risk dominates the exposure. In such cases the payoff
depends more on the difference between the portfolio values at adjacent exposure dates rather
than the level, reducing the acceleration factor from 12 to 7 when using the local model. When
using the global model, on the other hand, the Brownian bridge discretization, on average,
performs equally on collateralized and uncollateralized portfolios, with an acceleration factor
of 3. The Brownian bridge portfolio interpolation technique is shown to further increases
the efficiency of QMC+BB to 5 across the global model results. Moreover, randomization
(RQMC+BB) can provide additional speed-up, especially on lower-dimensional problems.

We note that while the randomization scheme used in this work is based on the linear
permutation of digits introduced by Matousek (1998) [20], other mechanisms are possible. In
particular, our future work aims at investigating the effect of scrambled nets (see Owen (1998)
[26]) in further accelerating RQMC performance for CVA and CVA sensitivity calculations.
The potentially large number of permutations required for this form of scrambling may require
an optimized implementation of the original algorithm.

While we have shown that the Brownian bridge discretization can vastly improve the con-
vergence rate of the standard QMC method, we are interested in investigating other methods
of Brownian path construction, such as those based on the principal component analysis (see
Glasserman (2004) [10]) or the alternative Brownian bridge construction of Lin and Wang (2007)
[19], under both the T -forward and risk-neutral measure.

Other potential ideas for future research include combining QMC methods with optimiza-
tions discussed in the introduction. Combining, for example, the direct and independent sim-
ulation approach of Ghamami and Zhang (2014) [8] with randomized QMC methods with the
Brownian bridge can diversify the errors across the time bucket, just as with pseudo random
numbers, but in addition can reduce the number of uniforms needed to describe the payoff.
Another promising direction is to combine the work of Burnett et al. (2016) [5] with the es-
timated QMC convergence constants and rates for the various netting sets and risks to find
the optimal number of QMC paths needed for each risk. We expect the additional variability
in convergence rates may make this type of analysis even more important, as paths and time
spent can yield vastly different benefits.

We have shown that QMC with the Brownian bridge discretization is suitable to the esti-
mation of CVA and CVA sensitivities when using a cross currency, single factor per currency
Hull-White model when the portfolios contain vanilla interest rate swaps. Large variability
in the acceleration was found, with the general pattern that more complex payoffs had lower
acceleration factors. The way the acceleration decreased with the complexity was in some cases
smooth, especially when going from very small number of dimensions to a moderate number
of dimension, but was quite noisy when going from a moderate number of dimension to a high
number of dimensions. This variability and noise make it difficult to extrapolate the results to
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different models and portfolios. It is extremely important then for potential users to try QMC
methods out on their portfolio and set of risk calculations. It has been our experience that this
work is worthwhile, yielding benefits that are maximized when local models are deployed.

Appendices

A Equivalent Paths

To investigate the convergence pattern of the different schemes, we use the methodology outlined
in section 2.5. We start by calculating a total of 1,638,400 payoff values. These values are split
up into multiple trials that each contain n subsetted paths. The subset of path combinations
that we chose to summarize over vary from 2 to 16,384 in powers of 2, i.e. ni = 2i for
i = 1, 2, . . . , 14. We average over ni paths for each of the kni = (100× 16, 384)/ni consecutive
trials, so that at 16,384 paths 100 trials are generated, while at 2 paths 819,200 trials are used.
These averages can then be used to determine the error estimate, with the methodology varying
depending on the random number type.

For the randomized scheme, RQMC+BB, rather than generating 1,638,400 paths, we only
generate the first ni paths. The sequence is independently randomized kni times in order to
obtain 1,638,400 payoff values. The averages are then calculated with the same methodology
as in the other schemes.

Once the root mean squared error (RMSE) has been calculated for each number of paths,
we regress the log RMSE onto the log number of paths to estimate the convergence coefficients
α and β. In the end, for each method M and payoff f , the expected error is approximated by:

σ(M, f, n) = α(M, f)n−β(M,f) (26)

Finding the number of paths p using methodM1 required to match the expected error using n
paths using method M2 is then found by equating the two convergence equations and solving
for p:

p(M1, f,M2, n) =

(
α(M2, f)

α(M1, f)

)− 1
β(M1,f)

n
β(M2,f)

β(M1,f) (27)

In this paper we primarily set M2 = MC and n = 10, 000. The acceleration factor a is simply
n/p:

a(M1, f,M2, n) =

(
α(M2, f)

α(M1, f)

) 1
β(M1,f)

n
1− β(M2,f)

β(M1,f) (28)

B Low-dimensional projections of the Sobol’ sequence

The Sobol’ sequence is an example of the so-called low-discrepancy sequences, a term tradition-
ally reserved for d-dimensional sequences x0, x1, . . . , xn−1 that have a star discrepancy bound
of (see Glasserman (2004) [10])

D∗n(x1, . . . , xn) = O

(
lnd(n)

n

)
. (29)

In contrast, random numbers on average have a discrepancy bound of (Niederreiter (1992) [24])

D∗n(x1, . . . , xn) = O

(√
ln(ln(n))√

n

)
. (30)
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The Koksma-Hlawka inequality, which gives an upper bound on the Monte Carlo approxima-
tion error as a multiple of the underlying sequence’s star discrepancy, combined with equation
(30) gives the well-known O (1/

√
n) convergence rate of classical MC. On the other hand, since

the logarithmic term lnd(n) can be absorbed into any power of n, equation (29) implies that
for low enough dimensions QMC can achieve a convergence rate of O

(
1/n1−ε

)
for all ε > 0.

However, as the dimensionality increases, the number of points required to obtain this superior
convergence rate increases dramatically.

Yet in practice, it is sometimes found that QMC outperforms standard MC even for high-
dimensional problems and relatively low path numbers. As suggested in [6, 16, 17], the efficiency
of QMC for a particular problem is better attributed to its effective dimension than nominal
dimension.

For instance, the function

f(x) =

d∑
i=1

sin(4πxi)
2, x = [x1, . . . , xd]

T ∈ [0, 1)d.

has nominal dimension d, but an effective dimension of only 1. In other words, the integral of
f can be calculated as the sum of integrals of functions of only 1 dimensions.

Since the binary segments of the Sobol’ sequence have perfectly uniform 1-dimensional
projections14 (see Figure 13a), they can be used to provide highly accurate approximations of
integrals of functions whose effective dimension is or can be reduced to 1 (e.g. with a Brownian
bridge discretization the effective dimension of a European call option price can be reduced to 1
(see Bianchetti et al. (2015) [2]). Thus, QMC combined with Brownian bridge (i.e. QMC+BB)
yields a highly accurate approximation for this payoff. This is in contrast to classical MC based
on pseudo-random numbers for which no particular segment of the sequence can be guaranteed
to have a perfectly uniform distribution (Figure 13b).

(a) Sobol’ sequence (b) Mersenne Twister

Figure 13: 32-bin histogram of the first 32 points of a Sobol’ sequence (a) and Mersenne Twister
sequence (b) in the [0, 1) interval.

While each dimension of the Sobol’ sequence has perfectly uniform distribution, the same
cannot be said of its higher-dimensional projections. For instance, while a set of 512 points of a
particular Sobol’ sequence in dimensions i and j each have perfectly uniform distribution, the 2-
dimensional projection of these points on the (i, j) plane has regions devoid of any points (Figure
15a). In this scenario, an integrand of effective dimension 1, e.g. f(x) = sin(4πx47)+sin(4πx49)
(Figure 14a), would have much smaller integration error compared to another one with effective
dimension 2, such as g(x) = sin(4πx47) · sin(4πx49) (Figure 14b), even though both have a

14Each binary segment {xi : j2m < i < (j + 1)2m}, j = 0, 1, 2, . . . of the Sobol’ sequence is a (t,m, d)-net for
any m > t (see Glasserman (2004) [10]). With t = 0 and d = 1, this implies that exactly 2t = 1 point falls in
each elementary subinterval of volume 2t−m = 2−m, resulting in perfectly uniform 1-dimensional histograms.
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nominal (i.e. total) dimension of 2, where x = [x47, x49]T . This is because f(x) depends on
marginal distributions that are of one dimension, whereas g(x) depends on the two-dimensional
distribution of the sequence on the (47, 49)-plane. In fact, because g(x) is non-negative only
in the non-void squares of size 1/4 × 1/4 = 1/16 in Figure 15a, calculation of the integral of
this function based on the first 512 points of the Sobol’ sequence would be integrating only
the positive regions of the integrand, resulting in a highly inaccurate approximation of the true
value of the integral, which we know to be 0. On the other hand, with 1024 points of the
same sequence a much more uniform distribution of the points on the (47, 49)-plane is obtained
(Figure 15b), resulting in a much more accurate approximation of the integral of g(x).

(a) f(x) = sin(4πx47) + sin(4πx49) (b) g(x) = sin(4πx47) · sin(4πx49)

Figure 14: Plot of 2-dimensional functions f(x) and g(x) on the unit (47,49)-plane with effective
dimensions of 1 and 2, respectively.

(a) 512 points (b) 1024 points

Figure 15: 2-dimensional projection of the BRODA Sobol’ sequence (SobolSeq65536) onto the
(47, 49)-plane.

Thus, as the number of points is increased (while working solely with binary segments of
size 2m), generally the distribution of points on the lower-dimensional projections improves
and the number of dimension pairs that exhibit such “hole” structures decreases. Neverthe-
less, we have found that undesirable 2D projections can still persist even at high number of
paths. For instance, projection of the first 213 = 8192 points of the BRODA[4] Sobol’ sequence
(SobolSeq65536) onto the (62,73)-plane fills only two of the quadrants on the plane (Figure
16a). Similarly, the projection of the first 210 = 1024 points of the Joe/Kuo Sobol’ sequence
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(D6) (see Joe and Kuo (2008) [14, 15]) on to the (401,358)-plane fills the same two quadrants
only (Figure 16b).

(a) 8192 poits on (62,73)-plane (b) 1024 poits on (358,401)-plane

Figure 16: The projection of the first 8192 points of the BRODA Sobol’ sequence (SobolSeq65536)
onto the (62,73)-plane (left) and the first 1024 points of the Joe/Kuo Sobol’ Sequence (D6) onto the
(358, 401)-plane (right).

An equivalent way to characterizing these patterns is by noting that, in both cases, all the
points are either less than 0.5 or bigger to equal to 0.5 across the aforementioned dimension
pairs, i.e. they all share the same most-significant-bit (MSB). Such coincidence stems from
the fact that the direction numbers used to generate both of the dimensions have the same
MSB. Specifically, across dimensions 62 and 73 of the BRODA sequence, the first 13 direction
numbers used to generate the first 213 points have the same MSB. Similarly, the first 10 direction
numbers of the Joe/Kuo Sobol’ sequence share the same MSB across dimensions 358 and 401.
Note that Figure 15a is an example where the projection of the first 8 direction numbers of the
sequence across dimensions 47 and 49 share the same second MSB.
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