

Catalysts for Polyolefins

PEP Report 153F October 2020

Process Economics Program

PEP Report 153F

Catalysts for Polyolefins

Marianna Asaro, Executive Director, Industrial Chemistry and Catalysis

Abstract

Polyethylene (PE) and polypropylene (PP) are the two largest polymer families, in terms of of both product volume and catalyst usage. Linear polyethylenes (HDPE, LLDPE, MDPE, VLDPE, plastomers, and elastomers) are produced catalytically at low pressures using suspension (slurry), gas phase, or solution processes. Other polyethylene production (LDPE) uses non-catalytic, free radical initiated processes with bulk ethylene and high pressures. All processes for propylene polymerization are catalyzed. Catalyzed processes account for 87% of polyolefin production.

Among the three broad classes of commercial olefin polymerization catalysts; Ziegler-Natta (ZN) catalysts, chromium-based catalysts, and single site catalysts (SSC); about 75% are of the ZN type. The discovery of ZN catalysis in the 1950s enabled the PE industry and launched the PP industry.

This report provides process design and economics for three Ziegler-Natta olefin polymerization catalysts:

• A batch process producing 0.11 million lb per year (50 tpa) of Ziegler precatalyst for use in slurry phase production of PE.

The precatalyst may be similar to those employed in the JCES series developed by Sichuan Jincheng Chemical catalyst company. This type of catalyst has been used in production of bimodal or unimodal HDPE by the Innovene S (INEOS), CX (Mitsui), and Hostalen (LyondellBasell) processes.

• A batch process producing 2.1 million lb per year (961 tpa) of Ziegler precatalyst, slurried in oil, for use in gas phase production of PE. The design capacity is 0.717 million lb per year (325 tpa) of solid precatalyst (oil-free basis).

The precatalyst may be similar to Univations's UCATTM-J catalyst, used in the UNIPOLTM PE process to produce a broad range of LLDPE and HDPE products.

• A batch process producing 0.11 million lb per year (50 tpa) of Ziegler-Natta precatalyst for use in gas phase production of PP.

The precatalyst may be similar to those employed in the DJD series manufactured by Liaoning Dingjide Petrochemical company. This type of catalyst is used in gas phase PP production such as the UNIPOL PP process.

Catalysts, process designs, and process economics are presented for the aforementioned ZN catalysts. The report also includes industry and technology overviews for the field of polyolefin process catalysts. The ZN catalysts' interactive iPEP module is included, enabling the user to compare economics for the different processes in several geographic regions.

While the processes presented herein represent IHS Markit Process Economic Program's (PEP's) independent interpretation of the literature, and may not reflect in whole or in part the actual catalyst formulations and plant configurations, PEP believes the conceptual designs sufficient representative of materials used and plant configurations to enable Class III economic evaluations.

Contents

1	Introduction	9
2	Summary	11
	Technical aspects	11
	Catalysts for polymerizing ethylene	11
	Catalysts for polymerizing propylene	12
	Methylaluminum compounds	13
	Commercial aspects	14
	Catalyst producers	15
	Representative catalysts and processes selected for evaluation	15
	Ti/Mg precatalyst for use in slurry phase polyethylene processes	15
	Ti/Mg precatalyst for use in gas phase polyethylene processes	18
	Ti/Mg precatalyst for use in gas phase polypropylene processes	19
	Process economics	21
	Carbon footprint	25
3	Industry status	27
	Demand and market drivers	27
	Catalyst producers	30
	W. R. Grace	30
	Univation technologies	31
	LyondellBasell	32
	Mitsui Chemicals	32
	Sumitomo Chemical	32
	PQ Corporation	34
	INEOS	34
	Clariant	34
	Evonik	35
	Product price	35
4	Technology overview	36
	Polyethylene process technology	36
	Commercial HDPE and LLDPE process technology	36
	HDPE	36
	LLDPE	38
	Chromium-based catalysts for HDPE	38
	Ziegler catalysts for PE	40
	Bimodal catalysts	41
	Single-site catalysts for LLDPE and HDPE	41
	Constrained geometry catalysts	42
	Other single-site catalysts	43
	Bimodal catalysts	44
	Commercial gas-phase PE processes	45
	UNIPOL™ PE process	45
	Innovene™ G process	47
	Spherilene™ process	48
	Hyperzone™ process	49
	Commercial slurry-loop PE processes	49
	MarTECH™ SL and ADL processes	50
	Innovene™ S process	53
	Commercial slurry CSTR PE processes	54
	Hostalen ACP process	54

	CX PE process	55
	Commercial hybrid PE process	56
	Borstar™ PE process	56
	Commercial solution-phase PE processes	56
	Dow Chemical Dowlex PE process	57
	Nova Chemical SCLAIRTECH and Advanced SCLAIRTECH PE processes	58
	Borealis Borceed™ (Compact) PE processes	59
	SK Innovation's Nexlene™ process	60
	Polypropylene catalysis	60
	Polypropylene tacticity	61
	Types of polypropylene	61
	Types of commercial polypropylene process technology	61
	Commercial gas-phase PP processes	66
		66
	Sumitomo PP process	67
	Novolen PP process	67
	Japan Polypropylene Corporation (Chisso) Horizone PP process	69
	INFOS Innovene™ PP process	60
	I vondellBasell Spherizone™ PP process	71
	Avant establiste	71
	Avail calaiysis	72
		72
	Lyondelibaseli Spheripol PP process Mitaui Chemicala Hyrad II DD process	72
	Finisul Chemicals Hypothi PP process	73
	Exxoniviobil PP process	74
	Borealis Borstar polypropylene process	74
Э	Production of a 11/mg precatalyst for use in slurry phase polyethylene processes	77
	Design bases	11
	Precatalyst synthesis	77
	Process description	78
	Section 100—Raw material purification	78
	Section 200—Precatalyst synthesis and isolation	81
	Section 300—HCI absorption	83
	Process discussion	96
	Raw materials and products	96
	Process configuration	97
	Sequence of operations and cycle time	98
	Materials of construction	100
	By-products and process waste effluents	100
	Cost estimates	102
	Fixed capital costs	102
	Production costs	103
6	Production of a Ti/Mg precatalyst for use in gas phase PE production	112
	Design bases	112
	Precatalyst design and synthesis	112
	Granulation	114
	Process description	114
	Section 100—Precatalyst synthesis	114
	Section 200—Granulation	116
	Process discussion	123
	Raw materials	123
	Process configuration	124
	Sequence of operations	125
	Materials of construction	127
	By-products and process waste effluents	127

	Cost estimates	130
	Fixed capital costs	130
	Production costs	131
7	Production of a Ti/Mg precatalyst for use in gas phase PP production	138
	Design bases	138
	Precatalyst synthesis	138
	Process description	139
	Section 100—Raw material purification	139
	Section 200—Precatalyst synthesis and isolation	142
	Section 300—Recycle operations	143
	Section 400—HCI absorption	144
	Process discussion	154
	Process discussion	154
	Raw materials and products	154
	Process configuration	156
	Sequence of operations, cycle time, and equipment sizing	156
	Materials of construction	160
	By-products and process waste effluents	160
	Cost estimates	161
	Fixed capital costs	162
	Production costs	163

Tables

Table 2.1 Major producers of olefin polymerization catalysts	14
Table 2.2 Summary of process technologies for production of olefin polymerization precatalysts	16
Table 2.3 Olefin polymerization precatalyst production—Total capital investment	22
Table 2.4 Olefin polymerization precatalyst production—Production costs	23
Table 4.1 Polyethylene types	36
Table 4.2 Typical operating conditions for different HDPE processes	37
Table 4.3 Typical operating conditions for different LLDPE processes	38
Table 4.4 UNIPOL catalyst types	46
Table 4.5 Typical operating conditions for different polypropylene processes	62
Table 4.6 Sequential improvements to Ziegler-Natta propylene polymerization catalysts	64
Table 5.1 Precatalyst for use in slurry PE production—Design bases and assumptions	79
Table 5.2 Precatalyst for use in slurry PE production—Batch mass balance	84
Table 5.3 Precatalyst for use in slurry PE production—Major equipment	93
Table 5.4 Precatalyst for use in slurry PE production—Utilities summary	96
Table 5.5 Precatalyst for use in slurry PE production — Process waste streams	101
Table 5.6 Precatalyst for use in slurry PE production—Carbon emissions	102
Table 5.7 Precatalyst for use in slurry PE production—Total capital investment	105
Table 5.8 Precatalyst for use in slurry PE production—Capital investment by section	106
Table 5.9 Precatalyst for use in slurry PE production—Production costs	108
Table 6.1 Precatalyst for use in gas phase PE production—Design bases and assumptions	115
Table 6.2 Precatalyst for use in gas phase PE production—Batch mass balance	118
Table 6.3 Precatalyst for use in gas phase PE production—Major equipment	121
Table 6.4 Precatalyst for use in gas phase PE production—Utilities summary	123
Table 6.5 Precatalyst for use in gas phase PE production—Process waste streams	129
Table 6.6 Precatalyst for use in gas phase PE production—Carbon emissions	130
Table 6.7 Precatalyst for use in gas phase PE production—Total capital investment	133
Table 6.8 Precatalyst for use in gas phase PE production—Capital investment by section	134
Table 6.9 Precatalyst for use in gas phase PE production—Production costs	135

Table 7.1 Precatalyst for use in gas phase PP production—Design bases and assumptions	140
Table 7.2 Precatalyst for use in gas phase PP production—Batch mass balance	145
Table 7.3 Precatalyst for use in gas phase PP production—Major equipment	151
Table 7.4 Precatalyst for use in gas phase PP production—Utilities summary	154
Table 7.5 Precatalyst for use in gas phase PP production—Process waste streams	160
Table 7.6 Precatalyst for use in gas phase PP production—Carbon emissions	161
Table 7.7 Precatalyst for use in gas phase PP production—Total capital investment	164
Table 7.8 Precatalyst for use in gas phase PP production—Capital investment by section	165
Table 7.9 Precatalyst for use in gas phase PP production—Production costs	167

Figures

Figure 2.1 World consumption of chemical processing catalysts by volume in 2019	14
Figure 2.2 Block flow diagram for production of Ti/Mg precatalyst for use in slurry phase PE production	17
Figure 2.3 Block flow diagram for production of Ti/Mg precatalyst for use in gas phase PE production	18
Figure 2.4 Block flow diagram for production of Ti/Mg precatalyst for use in gas phase PP production	20
Figure 2.5 Olefin polymerization precatalyst production—Factors of production	25
Figure 2.6 Olefin polymerization precatalyst production—Carbon footprints	26
Figure 3.1 Global PE supply and demand	28
Figure 3.2 Global polypropylene supply and demand	28
Figure 3.3 Global PE demand by application in 2019	29
Figure 4.1 Reaction pathway for olefin polymerization (TEAI cocatalyst)	37
Figure 4.2 First-generation metallocene complex: Bis(1-methyl-3-n-butylcyclopentadienyl)-	
zirconium dichloride	42
Figure 4.3 First-generation constrained geometry complex: Dimethylsilyl(tetramethylcyclopentadienyl)(t-	
butylamido)]titanium dimethyl	43
Figure 4.4 SK Innovation's Nexlene™ catalyst structure	43
Figure 4.5 Nova Chemical's phosphole and phosphinimine catalysts	44
Figure 4.6 Univation's non-metallocene ligand-based catalyst bis(2-(trimethylphenylamido)-	
ethyl) amine zirconium dibenzyl	45
Figure 4.7 Simplified flow diagram of the UNIPOL™ PE process	46
Figure 4.8 Simplified flow diagram of the Innovene™ G PE process	47
Figure 4.9 Simplified flow diagram of the Spherilene™ S PE process	48
Figure 4.10 Simplified flow diagram of the Hyperzone™ PE process	49
Figure 4.11 Simplified flow diagram of the MarTECH™ SL PE process	50
Figure 4.12 Simplified flow diagram of the MarTECH™ ADL PE process	51
Figure 4.13 Dual catalyst system—Bridged metallocene catalyst components	52
Figure 4.14 Dual catalyst system—Hydrogen scavenging metallocene catalyst component	52
Figure 4.15 Simplified flow diagram of the Innovene™ S PE process	53
Figure 4.16 Simplified flow diagram of the Hostalen™ ACP PE process	54
Figure 4.17 Simplified flow diagram of the Mitsui CX™ PE process	55
Figure 4.18 Simplified flow diagram of Borealis' Borstar™ 2G PE process	56
Figure 4.19 Simplified flow diagram of Dow Chemical's DOWLEX™ PE process with two loop reactors	57
Figure 4.20 Simplified flow diagram of NOVA Chemical's Advanced SCLAIRTECH™ PE process	58
Figure 4.21 Simplified flow diagram of Borealis's Compact™ PE process	59
Figure 4.22 Simplified flow diagram of SK Innovation's Nexlene™ PE process	60
Figure 4.23 Behavior of third-, fourth-, and fifth-generation Ziegler-Natta catalysts in gas-	_
phase reactors	66
Figure 4.24 Simplified flow diagram of UNIPOL™ PP process for impact copolymer production	67
Figure 4.25 Simplified flow diagram of the Sumitomo PP process for impact copolymer production	68
Figure 4.26 Simplified flow diagram of the Novolen PP process for impact copolymer production	68

70
70
71
73
74
75
76
99
110
126
137
158
169

Appendix D Figures

Figure 5.1 Precatalyst for use in slurry PE production—Process Flow Diagram (page 1 of 3)	192
Figure 5.1 Precatalyst for use in slurry PE production—Process Flow Diagram (page 2 of 3)	193
Figure 5.1 Precatalyst for use in slurry PE production—Process Flow Diagram (page 3 of 3)	194
Figure 6.1 Precatalyst for use in gas phase PE production—Process Flow Diagram (page 1 of 2)	195
Figure 6.1 Precatalyst for use in gas phase PE production—Process Flow Diagram (page 2 of 2)	196
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 1 of 4)	197
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 2 of 4)	198
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 3 of 4)	199
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 4 of 4)	200

6

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Histither IHS
Markit or the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright© 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

