Abstract

Polyethylene (PE) and polypropylene (PP) are the two largest polymer families, in terms of product volume and catalyst usage. Linear polyethylenes (HDPE, LLDPE, MDPE, VLDPE, plastomers, and elastomers) are produced catalytically at low pressures using suspension (slurry), gas phase, or solution processes. Other polyethylene production (LDPE) uses non-catalytic, free radical initiated processes with bulk ethylene and high pressures. All processes for propylene polymerization are catalyzed. Catalyzed processes account for 87% of polyolefin production.

Among the three broad classes of commercial olefin polymerization catalysts; Ziegler-Natta (ZN) catalysts, chromium-based catalysts, and single site catalysts (SSC); about 75% are of the ZN type. The discovery of ZN catalysis in the 1950s enabled the PE industry and launched the PP industry.

This report provides process design and economics for three Ziegler-Natta olefin polymerization catalysts:

- A batch process producing 0.11 million lb per year (50 tpa) of Ziegler precatalyst for use in slurry phase production of PE.

 The precatalyst may be similar to those employed in the JCES series developed by Sichuan Jincheng Chemical catalyst company. This type of catalyst has been used in production of bimodal or unimodal HDPE by the Innovene S (INEOS), CX (Mitsui), and Hostalen (LyondellBasell) processes.

- A batch process producing 2.1 million lb per year (961 tpa) of Ziegler precatalyst, slurried in oil, for use in gas phase production of PE. The design capacity is 0.717 million lb per year (325 tpa) of solid precatalyst (oil-free basis).

 The precatalyst may be similar to Univations’s UCAT™-J catalyst, used in the UNIPOL™ PE process to produce a broad range of LLDPE and HDPE products.

- A batch process producing 0.11 million lb per year (50 tpa) of Ziegler-Natta precatalyst for use in gas phase production of PP.

 The precatalyst may be similar to those employed in the DJD series manufactured by Liaoning Dingjide Petrochemical company. This type of catalyst is used in gas phase PP production such as the UNIPOL PP process.

Catalysts, process designs, and process economics are presented for the aforementioned ZN catalysts. The report also includes industry and technology overviews for the field of polyolefin process catalysts. The ZN catalysts’ interactive iPEP module is included, enabling the user to compare economics for the different processes in several geographic regions.
While the processes presented herein represent IHS Markit Process Economic Program’s (PEP’s) independent interpretation of the literature, and may not reflect in whole or in part the actual catalyst formulations and plant configurations, PEP believes the conceptual designs sufficient representative of materials used and plant configurations to enable Class III economic evaluations.
Contents

1 **Introduction**

2 **Summary**
 - Technical aspects
 - Catalysts for polymerizing ethylene
 - Catalysts for polymerizing propylene
 - Methylaluminum compounds
 - Commercial aspects
 - Catalyst producers
 - Representative catalysts and processes selected for evaluation
 - Ti/Mg precatalyst for use in slurry phase polyethylene processes
 - Ti/Mg precatalyst for use in gas phase polyethylene processes
 - Ti/Mg precatalyst for use in gas phase polypropylene processes
 - Process economics
 - Carbon footprint

3 **Industry status**
 - Demand and market drivers
 - Catalyst producers
 - W. R. Grace
 - Univation technologies
 - LyondellBasell
 - Mitsui Chemicals
 - Sumitomo Chemical
 - PQ Corporation
 - INEOS
 - Clariant
 - Evonik
 - Product price

4 **Technology overview**
 - Polyethylene process technology
 - Commercial HDPE and LLDPE process technology
 - HDPE
 - LLDPE
 - Chromium-based catalysts for HDPE
 - Ziegler catalysts for PE
 - Bimodal catalysts
 - Single-site catalysts for LLDPE and HDPE
 - Constrained geometry catalysts
 - Other single-site catalysts
 - Bimodal catalysts
 - Commercial gas-phase PE processes
 - UNIPOL™ PE process
 - Innovene™ G process
 - Spherilene™ process
 - Hyperzone™ process
 - Commercial slurry-loop PE processes
 - MarTECH™ SL and ADL processes
 - Innovene™ S process
 - Commercial slurry CSTR PE processes
 - Hostalen ACP process
<table>
<thead>
<tr>
<th>Process Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of a Ti/Mg precatalyst for use in slurry phase polyethylene processes</td>
<td>77</td>
</tr>
<tr>
<td>Production of a Ti/Mg precatalyst for use in gas phase PE production</td>
<td>112</td>
</tr>
</tbody>
</table>

5 Production of a Ti/Mg precatalyst for use in slurry phase polyethylene processes

- **Design bases**
- **Precatalyst synthesis**

Process description

- **Section 100—Raw material purification**
- **Section 200—Precatalyst synthesis and isolation**
- **Section 300—HCl absorption**

- **Process discussion**
- **Raw materials and products**
- **Process configuration**
- **Sequence of operations and cycle time**
- **Materials of construction**
- **By-products and process waste effluents**

- **Cost estimates**
- **Fixed capital costs**
- **Production costs**

6 Production of a Ti/Mg precatalyst for use in gas phase PE production

- **Design bases**
- **Precatalyst design and synthesis**
- **Granulation**

- **Process description**
- **Section 100—Precatalyst synthesis**
- **Section 200—Granulation**

- **Process discussion**
- **Raw materials**
- **Process configuration**
- **Sequence of operations**
- **Materials of construction**
- **By-products and process waste effluents**
7 Production of a Ti/Mg precatalyst for use in gas phase PP production

Design bases

Precatalyst synthesis

Process description

Section 100—Raw material purification
Section 200—Precatalyst synthesis and isolation
Section 300—Recycle operations
Section 400—HCl absorption

Process discussion

Cost estimates

Tables

Table 2.1 Major producers of olefin polymerization catalysts
Table 2.2 Summary of process technologies for production of olefin polymerization precatalysts
Table 2.3 Olefin polymerization precatalyst production—Total capital investment
Table 2.4 Olefin polymerization precatalyst production—Production costs
Table 4.1 Polyethylene types
Table 4.2 Typical operating conditions for different HDPE processes
Table 4.3 Typical operating conditions for different LLDPE processes
Table 4.4 UNIPOL catalyst types
Table 5.1 Precatalyst for use in slurry PE production—Design bases and assumptions
Table 5.2 Precatalyst for use in slurry PE production—Batch mass balance
Table 5.3 Precatalyst for use in slurry PE production—Major equipment
Table 5.4 Precatalyst for use in slurry PE production—Utilities summary
Table 5.5 Precatalyst for use in slurry PE production—Process waste streams
Table 5.6 Precatalyst for use in slurry PE production—Carbon emissions
Table 5.7 Precatalyst for use in slurry PE production—Total capital investment
Table 5.8 Precatalyst for use in slurry PE production—Capital investment by section
Table 5.9 Precatalyst for use in slurry PE production—Production costs
Table 6.1 Precatalyst for use in gas phase PE production—Design bases and assumptions
Table 6.2 Precatalyst for use in gas phase PE production—Batch mass balance
Table 6.3 Precatalyst for use in gas phase PE production—Major equipment
Table 6.4 Precatalyst for use in gas phase PE production—Utilities summary
Table 6.5 Precatalyst for use in gas phase PE production—Process waste streams
Table 6.6 Precatalyst for use in gas phase PE production—Carbon emissions
Table 6.7 Precatalyst for use in gas phase PE production—Total capital investment
Table 6.8 Precatalyst for use in gas phase PE production—Capital investment by section
Table 6.9 Precatalyst for use in gas phase PE production—Production costs
Table 7.1 Precatalyst for use in gas phase PP production—Design bases and assumptions
Table 7.2 Precatalyst for use in gas phase PP production—Batch mass balance
Table 7.3 Precatalyst for use in gas phase PP production—Major equipment
Table 7.4 Precatalyst for use in gas phase PP production—Utilities summary
Table 7.5 Precatalyst for use in gas phase PP production—Process waste streams
Table 7.6 Precatalyst for use in gas phase PP production—Carbon emissions
Table 7.7 Precatalyst for use in gas phase PP production—Total capital investment
Table 7.8 Precatalyst for use in gas phase PP production—Capital investment by section
Table 7.9 Precatalyst for use in gas phase PP production—Production costs

Figures

Figure 2.1 World consumption of chemical processing catalysts by volume in 2019
Figure 2.2 Block flow diagram for production of Ti/Mg precatalyst for use in slurry phase PE production
Figure 2.3 Block flow diagram for production of Ti/Mg precatalyst for use in gas phase PE production
Figure 2.4 Block flow diagram for production of Ti/Mg precatalyst for use in gas phase PP production
Figure 2.5 Olefin polymerization precatalyst production—Factors of production
Figure 2.6 Olefin polymerization precatalyst production—Carbon footprints
Figure 3.1 Global PE supply and demand
Figure 3.2 Global polypropylene supply and demand
Figure 3.3 Global PE demand by application in 2019
Figure 4.1 Reaction pathway for olefin polymerization (TEAl cocatalyst)
Figure 4.2 First-generation metalloocene complex: Bis(1-methyl-3-n-butylcyclopentadienyl)-zirconium dichloride
Figure 4.3 First-generation constrained geometry complex: Dimethylsilyl(tetramethylcyclopentadienyl)(t-buty lamido)titanium dimethyl
Figure 4.4 SK Innovation’s Nexlene™ catalyst structure
Figure 4.5 Nova Chemical’s phosphole and phosphinimine catalysts
Figure 4.6 Univation’s non-metallocene ligand-based catalyst bis(2-(trimethylphenylamido)-ethyl) amine zirconium dibenzyl
Figure 4.7 Simplified flow diagram of the UNIPOL™ PE process
Figure 4.8 Simplified flow diagram of the Innovene™ G PE process
Figure 4.9 Simplified flow diagram of the Spherilene™ S PE process
Figure 4.10 Simplified flow diagram of the Hyperzone™ PE process
Figure 4.11 Simplified flow diagram of the MarTECH™ SL PE process
Figure 4.12 Simplified flow diagram of the MarTECH™ ADL PE process
Figure 4.13 Dual catalyst system—Bridged metalloocene catalyst components
Figure 4.14 Dual catalyst system—Hydrogen scavenging metalloocene catalyst component
Figure 4.15 Simplified flow diagram of the Innovene™ S PE process
Figure 4.16 Simplified flow diagram of the Hostalen™ ACP PE process
Figure 4.17 Simplified flow diagram of the Mitsui CX™ PE process
Figure 4.18 Simplified flow diagram of Borealis’ Borstar™ 2G PE process
Figure 4.19 Simplified flow diagram of Dow Chemical’s DOWLEX™ PE process with two loop reactors
Figure 4.20 Simplified flow diagram of NOVA Chemical’s Advanced SCLAIRTECH™ PE process
Figure 4.21 Simplified flow diagram of Borealis’s Compact™ PE process
Figure 4.22 Simplified flow diagram of SK Innovation’s Nexlene™ PE process
Figure 4.23 Behavior of third-, fourth-, and fifth-generation Ziegler-Natta catalysts in gas-phase reactors
Figure 4.24 Simplified flow diagram of UNIPOL™ PP process for impact copolymer production
Figure 4.25 Simplified flow diagram of the Sumitomo PP process for impact copolymer production
Figure 4.26 Simplified flow diagram of the Novolen PP process for impact copolymer production
Appendix D Figures

Figure 5.1 Precatalyst for use in slurry PE production—Process Flow Diagram (page 1 of 3) 192
Figure 5.1 Precatalyst for use in slurry PE production—Process Flow Diagram (page 2 of 3) 193
Figure 5.1 Precatalyst for use in slurry PE production—Process Flow Diagram (page 3 of 3) 194
Figure 6.1 Precatalyst for use in gas phase PE production—Process Flow Diagram (page 1 of 2) 195
Figure 6.1 Precatalyst for use in gas phase PE production—Process Flow Diagram (page 2 of 2) 196
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 1 of 4) 197
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 2 of 4) 198
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 3 of 4) 199
Figure 7.1 Precatalyst for use in gas phase PP production—Process Flow Diagram (page 4 of 4) 200