

Green Ammonia Technology

PEP Review 2020-15 October 2020

Syed N Naqvi Executive Director

Process Economics Program

PEP Review 2020-15

Green Ammonia Technology

Syed N Naqvi, Executive Director

Abstract

Green ammonia refers to ammonia produced through a process that emits zero or a minimal amount of carbon dioxide (and other greenhouse substances) in the environment. Technologies for green ammonia production, which are in the emerging stage, are technically and environmentally quite opposite to the modern-day conventional ammonia technologies that, depending on the type of carbon-bearing fossil materials used to make ammonia, produce 1.5-2.5 tons of CO₂ per ton of ammonia. The ammonia industry is responsible for over 1% of the global greenhouse gas emissions.

With a growing demand for nitrogen from agriculture and industry, the problem of carbon footprint of the ammonia industry is recently getting more and more attention for a resolution. There are basically two ways to reduce or eliminate CO_2 emission from an ammonia production process; the first option is to use a technology of production, which would not produce CO_2 as an inevitable by-product of the process. The second option is to use carbon-bearing fuel/raw materials and capture/remove the CO_2 emitting from the process. This review presents the techno-economic evaluation of a green ammonia process based on the first option.

The green ammonia process essentially consists of three main steps: production of green hydrogen (by electrolysis of water using solar-energy based electricity), production of green nitrogen, and finally, production of green ammonia from green H_2 and green N_2 . Hence, as mentioned above, this green ammonia process avoids the use of carbon-containing fuels and raw materials.

Currently, the economics of such a green ammonia process (given inside) are not compatible with those of conventional ammonia processes. There are, however, certain ifs and buts, which can make the green ammonia process economically closer to a conventional process. Those things are described in this review.

The analysis of the technology is based on a simulated design of a hypothetical green ammonia plant of 200 Mtpd (metric tons per day) capacity. Different aspects of the technology have been analyzed and the analysis results, depending on the feature of technology, are presented in descriptive, tabulated, or diagrammatic formats. Main elements/sections of the technology analysis include selection and statement of assumptions/bases for process design, process design details (process description with a complete statement of process operating conditions, material and energy balance, process flow diagram, process discussion, process equipment listing with sizes, utilities consumption, capital costs, production costs, and a brief economic discussion.

Contents

1	Introduction	5
	Objective and scope of review	5
	Major design assumptions/criteria for design	5
	Scope of process economics	6
	Overall economic conclusion	7
	Commercial overview of technologies	8
	Process routes	10
	Hydrogen production by water electrolysis	12
	Industrial sizes of electrolyzers	16
2	Process description	18
	Hydrogen production (G-101)	18
	Nitrogen production (G-102)	23
	Ammonia production	28
3	Process discussion	34
4	Process economics	37
	Scope of process economics	37
	Plant economics	37
	Fixed capital costs	38
	Production costs	39
	Overall economic conclusion	39

Tables

Table 1A Key characteristics of electrolytic technologies	13
Table 1B Key operating and physical features of electrolyzers	13
Table 2.1 H ₂ production by electrolysis of water for green ammonia plant—Design bases and	
assumptions	19
Table 2.2 H ₂ production by electrolysis of water for green ammonia plant—Major equipment	20
Table 2.3 N ₂ production by air separation process for green ammomia plant-Design bases and	
assumptions	24
Table 2.4 N ₂ production by air separation process for green ammonia plant—Major equipment	25
Table 2.5 Green ammonia production—Design bases and assumptions	28
Table 2.6 Green ammonia production—Major stream flows	29
Table 3.1 Green ammonia production—Major equipment	35
Table 4.1 Green ammonia production—Total capital investment	41
Table 4.2 Green ammonia production—Production costs	42

Figures


Figure 1.1 A bird eyeview of green ammonia plant	10
Figure 1.2 Outline view of a green ammonia process	11
Figure 1.3 Haldor Topsoe solid-oxide co-electrolysis cell (SOEC) based ammonia process scheme	11
Figure 1.4 Haldor Topsoe solid-oxide co-electrolysis cell (SOEC) based ammonia process scheme	12
Figure 1.5 Alkaline water electrolyzer cell schematic	14
Figure 2.1 H ₂ production by electrolysis of water for green ammonia plant	22
Figure 2.2 Nitrogen production by air separation process for green ammonia plant	27
Figure 2.3 Green ammonia production—Integrated ammonia Process Flow Diagram	31
Figure 2.4 Green ammonia production—Ammonia refrigeration flow diagram	32
Figure 4.1 Green ammonia production—Effect of electricity price on production cost and product	
value of green value	44

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Writher IHS
Markit logos and trade names contained in this presentation in the event that any content, opinion, statements, estimates, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright© 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

