Catalysts for Reforming Naphtha to Hydrocarbons

PEP Report 153G
September 2021
Contacts

Marianna Asaro
Executive Director
Marianna.Asaro@ihsmarkit.com

Michael Arné
Vice President, Process Economics Program
Michael.Arne@ihsmarkit.com
PEP Report 153G

Catalysts for Reforming Naphtha to Hydrocarbons

Marianna Asaro, Executive Director, Industrial Chemistry and Catalysis

Abstract

This report presents process designs and economics for production of a semi-regenerative (SR) naphtha reforming catalyst, a continuous catalytic regeneration (CCR) naphtha reforming catalyst, and a widely used support material. Recent developments, background technologies, and catalyst synthesis chemistry are discussed in relation to process design.

Naphtha is the key source of both high-octane gasoline and aromatic chemicals. Well over half of all naphtha ultimately goes into gasoline. Production of aromatic chemicals currently accounts for almost a quarter of naphtha consumption and is rising, as part of a general trend in crude oil to chemicals production. Heavy cuts are used in catalytic reforming, and the projected annual growth in reforming catalyst consumption is almost twice that for consumption of heavy naphtha itself.

Changing market dynamics can present challenges to catalyst manufacturing. Although over one-third of catalyst demand is for SR catalyst, a 10+ year trend of increasing demand for CCR catalyst and declining demand for SR catalyst is expected to continue. Manufacturers provide both types of catalyst and a full range of services. The design and process economics in this report are therefore evaluated for both standalone plants and plants campaigned to produce both types of catalyst, optionally also producing a third product for increased utilization of capital.

The report also provides overviews of the naphtha reforming catalyst industry and reforming technologies. Products offered by catalyst suppliers are noted, and patent portfolios on catalysts and associated process innovations from industry leaders are reviewed over the past 10 years.

The Naphtha Reforming Catalysts interactive iPEP module is included, enabling the user to compare economics for the different processes in multiple geographic regions.

While the processes presented herein represent the IHS Markit Process Economic Program’s (PEP’s) independent interpretation of the literature, and may not reflect in whole or in part the actual catalyst formulations and plant configurations, PEP believes the conceptual designs are sufficiently representative of materials and plant configurations used to enable Class III economic evaluations.
Contents

1 Introduction 9
2 Summary 10
 Production capacities and processes evaluated 11
 Cost estimates 14
 Carbon footprint 17
3 Industry status 18
 Catalyst producers 18
 Product price 20
4 Technology overview 21
 Chemistry of catalytic reforming 21
 Catalytic reforming processes 25
 Semi-regenerative and cyclic catalytic reforming 26
 Continuous catalyst regeneration reforming 27
 CCR reactors 30
 Product recovery 31
 Naphtha reforming catalysts 32
 Catalyst support 32
 Zeolite-based catalysts 34
 Noble metals 34
 Promoters 35
 Bimetallic catalysts–SR 36
 Bimetallic catalysts–cyclic reforming 36
 Bimetallic catalysts–CCR 37
 Multimetallic catalysts–SR 37
 Multimetallic catalysts–CCR 37
 Catalyst deactivation and regeneration 40
5 Recent patent activity 42
 UOP 43
 IFPEN/Axens/Shell 46
 Sinopec 49
 Process and support technologies for increased isoparaffins 52
 Process and support technologies for increased liquids yield 52
 Other support modifications 52
 Pt reduction and bypassing pre-sulfidation 53
 Other approaches to bypassing pre-sulfidation 53
 Other regeneration process inventions 53
 Other process intensification approaches 53
 Promoter patents 54
 PetroChina 54
 Chevron Phillips Chemical Co., Phillips 66, Chevron USA 55
 Chevron Phillips Chemical (CPC) 55
 Phillips 66 57
 Chevron USA 58
 Other companies/organizations 59
 ExxonMobil 59
 Reliance 59
 SABIC 60
 Beijing University of Chemical Technology 61
 CNOOC 61
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Production of semi-regenerative (SR) catalyst for naphtha reforming</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Design bases</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Chemistry of key process steps</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Preparation of alumina extrudates</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Preparation of perrhenic acid</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Calcination and reduction of impregnated precatalyst</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Process description</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Section 100—Alumina support preparation</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Section 200—Perrhenic acid preparation</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Section 300—Impregnation and reduction</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Section 400—Hexachloroplatinic acid preparation</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Process discussion</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Raw materials and products</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Process configuration</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Sequence of operations, cycle time, and equipment sizing</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Materials of construction</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Byproducts and process waste effluents</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Cost estimates</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>— Standalone SR catalyst plant</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Fixed capital costs</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Production costs</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>— SR catalyst, with saleable gamma-alumina extrudates</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>— SR catalyst, with CCR catalyst</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>— SR catalyst, with CCR catalyst and saleable gamma-alumina extrudates</td>
<td>102</td>
</tr>
<tr>
<td>6</td>
<td>Production of continuous catalyst regeneration (CCR) catalyst for naphtha reforming</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Design bases</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Chemistry of key process steps</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Preparation of alumina spheres</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Impregnation and Finishing</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Process description</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Section 100—Alumina support preparation</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Section 200—Impregnation and reduction</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Section 300—Hexachloroplatinic acid preparation</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Process discussion</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Raw materials</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Process configuration</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Sequence of operations, cycle time, and equipment sizing</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Materials of construction</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Byproducts and process waste effluents</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Cost estimates</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>— Standalone CCR catalyst plant</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Fixed capital costs</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Production costs</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>— CCR catalyst, with SR catalyst</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>— CCR catalyst, with SR catalyst and saleable gamma-alumina extrudates</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>Economic comparison of campaign strategies for production of semi-regenerative (SR) naphtha reforming catalyst, continuously regenerated naphtha reforming catalyst (CCR), and saleable alumina extrudates</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Cost estimates</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Allocation of costs</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>— Standalone alumina extrudates plant</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Fixed capital costs</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Production costs</td>
<td>164</td>
</tr>
</tbody>
</table>
Tables

Table 2.1 Summary of process technologies for production SR and CCR catalysts
Table 2.2 Economic comparison of plant configurations for production of naphtha reforming catalysts
Table 4.1 Composition of typical reformer feed and product streams
Table 4.2 Operating conditions of CCR versus SR Platforming units
Table 4.3 Common components and properties of reforming catalysts
Table 4.4 Recent reforming catalyst patent activity—UOP
Table 4.5 Recent reforming catalyst patent activity—IFPEN
Table 4.6 Recent reforming catalyst patent activity—Sinopec
Table 4.7 Recent reforming catalyst patent activity—Chevron Phillips Chemical Co.
Table 5.1 SR catalyst for naphtha reforming—Design bases and assumptions
Table 5.2 SR catalyst for naphtha reforming—Batch mass balance
Table 5.3 SR catalyst for naphtha reforming—Major equipment
Table 5.4 SR catalyst for naphtha reforming—Utilities summary
Table 5.5 SR catalyst for naphtha reforming—Process effluent streams
Table 5.6 SR catalyst for naphtha reforming—Carbon emissions
Table 5.7 SR catalyst for naphtha reforming—Total capital investment for standalone plant
Table 5.8 SR catalyst for naphtha reforming—Variable production costs for standalone plant
Table 5.9 SR catalyst for naphtha reforming—Production costs for standalone plant
Table 5.10 SR catalyst for naphtha reforming—Total capital investment for process campaigned with alumina extrudates production
Table 5.11 SR catalyst for naphtha reforming—Production costs for process campaigned with alumina extrudates production
Table 5.12 SR catalyst for naphtha reforming—Total capital investment for process campaigned with CCR catalyst production
Table 5.13 SR catalyst for naphtha reforming—Production costs for process campaigned with CCR catalyst production
Table 5.14 SR catalyst for naphtha reforming—Total capital investment for process campaigned with CCR catalyst and alumina extrudates production
Table 5.15 Catalyst for SR naphtha reforming—Capital investment by section for process campaigned with CCR catalyst and alumina extrudates production
Table 5.16 SR catalyst for naphtha reforming—Production costs for process campaigned with CCR catalyst and alumina extrudates production
Table 6.1 CCR catalyst for naphtha reforming, integrated plant—Design bases and assumptions
Table 6.2 CCR catalyst for naphtha reforming—Batch mass balance
Table 6.3 CCR catalyst for naphtha reforming—Major equipment
Table 6.4 CCR catalyst for naphtha reforming—Utilities summary
Table 6.5 CCR catalyst for naphtha reforming—Process effluent streams
Table 6.6 CCR catalyst for naphtha reforming—Carbon emissions
Table 6.7 CCR catalyst for naphtha reforming—Total capital investment for standalone plant
Table 6.8 CCR catalyst for naphtha reforming—Variable production costs for standalone plant
Table 6.9 CCR catalyst for naphtha reforming—Production costs for standalone plant
Table 6.10 CCR catalyst for naphtha reforming—Total capital investment for process campaigned with SR catalyst production
Table 6.11 CCR catalyst for naphtha reforming—Total capital investment for process campaigned with CCR catalyst and alumina extrudates production
Table 6.12 CCR catalyst for naphtha reforming—Production costs for process campaigned with CCR catalyst and alumina extrudates production
Table 6.13 CCR catalyst for naphtha reforming—Total capital investment for process campaigned with CCR catalyst and alumina extrudates production
Table 6.14 CCR catalyst for naphtha reforming—Production costs for process campaigned with CCR catalyst and alumina extrudates production
Table 6.15 CCR catalyst for naphtha reforming—Total capital investment for process campaigned with CCR catalyst and alumina extrudates production
Table 6.16 CCR catalyst for naphtha reforming—Production costs for process campaigned with CCR catalyst and alumina extrudates production

Confidential. © 2021 IHS Markit. All rights reserved.
Table 6.11 CCR catalyst for naphtha reforming—Production costs for process campaigned with SR catalyst production
Table 6.12 CCR catalyst for naphtha reforming—Total capital investment for process campaigned with SR catalyst and alumina extrudates production
Table 6.13 Catalyst for CCR naphtha reforming—Capital investment by section for process campaigned with SR catalyst and alumina extrudates production
Table 6.14 CCR catalyst for naphtha reforming—Production costs for process campaigned with SR catalyst and alumina extrudates production
Table 7.1 Comparison of base-case production costs for CCR catalyst in standalone and integrated plants
Table 7.2 Comparison of base-case production costs for CCR catalyst in standalone and integrated plants
Table 7.3 Alumina extrudates—Total capital investment for standalone plant
Table 7.4 Alumina extrudates—Variable production costs for standalone plant
Table 7.5 Alumina extrudates—Production costs for standalone plant
Table 7.6 Alumina extrudates—Total capital investment for process campaigned with SR catalyst process
Table 7.7 Alumina extrudates—Production costs for process campaigned with SR catalyst process
Table 7.8 Alumina extrudates—Total capital investment for process campaigned with SR and CCR catalyst production
Table 7.9 Alumina extrudates—Production costs for process campaigned with SR and CCR catalyst production
Table 7.10 Economic comparison of plant configurations for production of naphtha reforming catalysts

Figures

Figure 2.1 Global refinery distillation and conversion unit capacity trends (1990–2018)
Figure 2.2 Operating schedule for standalone and campaigned processes
Figure 2.3 Campaigned production of CCR catalyst, SR catalyst, and alumina extrudates—Factors of production including 15% ROI
Figure 2.4 Production of CCR catalyst, SR catalyst, and alumina extrudates—Carbon footprints
Figure 4.1 Catalytic reforming reaction scheme
Figure 4.2 Semi-regenerative catalytic reforming—Block flow diagram
Figure 4.3 Light hydrocarbon aromatization technology, fixed bed (LHAT–F)—Block flow diagram
Figure 4.4 Continuous catalytic regeneration reforming—Block flow diagram
Figure 4.5 Continuous catalytic reforming with counter-current flow—Block flow diagram
Figure 4.6 Radial flow reactor
Figure 4.7 Texicap™ radial reactor with decreased catalyst dead space
Figure 4.9 Aromatic selectivity of zeolite-based catalyst
Figure 4.10 Effect of promoter system on reformate yield
Figure 4.11 Effect of promoter system on stability
Figure 4.12 Effect of promoter system on surface area aging
Figure 5.2 SR catalyst for naphtha reforming—Operations sequence (first 4 cycles)
Figure 5.3 SR catalyst for naphtha reforming—Kneader, model IPI 1500 AP/T
Figure 6.2 CCR catalyst for naphtha reforming—Operations sequence (first 4 cycles)
Appendix D Figures

Figure 4.8 Periodic table of the elements, PEP 2021 225
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 1 of 4) 226
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 2 of 4) 227
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 3 of 4) 228
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 4 of 4) 229
Figure 6.1 CCR catalyst for naphtha reforming—Process Flow Diagram (page 1 of 3) 230
Figure 6.1 CCR catalyst for naphtha reforming—Process Flow Diagram (page 2 of 3) 231
Figure 6.1 CCR catalyst for naphtha reforming—Process Flow Diagram (page 3 of 3) 232
IHS Markit Customer Care:
CustomerCare@ihsmarkit.com
Asia and the Pacific Rim
Japan: +813 6262 1887
Asia Pacific: +604 291 3600
Europe, Middle East, and Africa: +44 1344 328 300
Americas: +1 800 447 2273

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates (“IHS Markit”) is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, “Information”) changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site’s owners (or their products/services). IHS Markit is not responsible for either the content or output of external websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.