

Catalysts for Reforming Naphtha to Hydrocarbons

PEP Report 153G September 2021

Process Economics Program

Contacts

Marianna Asaro

Executive Director Marianna.Asaro@ihsmarkt.com

Michael Arné

Vice President, Process Economics Program Michael.Arne@ihsmarkit.com

PEP Report 153G

Catalysts for Reforming Naphtha to Hydrocarbons

Marianna Asaro, Executive Director, Industrial Chemistry and Catalysis

Abstract

This report presents process designs and economics for production of a semi-regenerative (SR) naphtha reforming catalyst, a continuous catalytic regeneration (CCR) naphtha reforming catalyst, and a widely used support material. Recent developments, background technologies, and catalyst synthesis chemistry are discussed in relation to process design.

Naphtha is the key source of both high-octane gasoline and aromatic chemicals. Well over half of all naphtha ultimately goes into gasoline. Production of aromatic chemicals currently accounts for almost a quarter of naphtha consumption and is rising, as part of a general trend in crude oil to chemicals production. Heavy cuts are used in catalytic reforming, and the projected annual growth in reforming catalyst consumption is almost twice that for consumption of heavy naphtha itself.

Changing market dynamics can present challenges to catalyst manufacturing. Although over one-third of catalyst demand is for SR catalyst, a 10+ year trend of increasing demand for CCR catalyst and declining demand for SR catalyst is expected to continue. Manufacturers provide both types of catalyst and a full range of services. The design and process economics in this report are therefore evaluated for both standalone plants and plants campaigned to produce both types of catalyst, optionally also producing a third product for increased utilization of capital.

The report also provides overviews of the naphtha reforming catalyst industry and reforming technologies. Products offered by catalyst suppliers are noted, and patent portfolios on catalysts and associated process innovations from industry leaders are reviewed over the past 10 years.

The Naphtha Reforming Catalysts interactive iPEP module is included, enabling the user to compare economics for the different processes in multiple geographic regions.

While the processes presented herein represent the IHS Markit Process Economic Program's (PEP's) independent interpretation of the literature, and may not reflect in whole or in part the actual catalyst formulations and plant configurations, PEP believes the conceptual designs are sufficiently representative of materials and plant configurations used to enable Class III economic evaluations.

Contents

1	Introduction	9
2	Summary	10
	Production capacities and processes evaluated	11
	Cost estimates	14
	Carbon footprint	17
3	Industry status	18
	Catalyst producers	18
	Product price	20
4	Technology overview	21
	Chemistry of catalytic reforming	21
	Catalytic reforming processes	25
	Semi-regenerative and cyclic catalytic reforming	26
	Continuous catalyst regeneration reforming	27
	CCR reactors	30
	Product recovery	31
	Naphtha reforming catalysts	32
	Catalyst support	32
	Zeolite-based catalysts	34
	Noble metals	34
	Promoters	35
	Bimetallic catalysts–SR	36
	Bimetallic catalysts-cyclic reforming	36
	Bimetallic catalysts–CCR	37
	Multimetallic catalysts-SR	37
	Multimetallic catalysts-CCR	37
	Catalyst deactivation and regeneration	40
	Recent patent activity	42
	UOP	43
	IFPEN/Axens/Shell	46
	Sinopec	49
	Process and support technologies for increased isoparaffins	52
	Process and support technologies for increased liquids yield	52
	Other support modifications	52
	Pt reduction and bypassing pre-sulfidation	53
	Other approaches to bypassing pre-sulfidation	53
	Other regeneration process inventions	53
	Other process intensification approaches	53
	Promoter patents	54
	PetroChina	54
	Chevron Phillips Chemical Co., Phillips 66, Chevron USA	55
	Chevron Phillips Chemical (CPC)	55
	Phillips 66	57
	Chevron USA	58
	Other companies/organizations	59
	ExxonMobil	59
	Reliance	59
	SABIC	60
	Beijing University of Chemical Technology	61
	CNOOC	61

	Air Liquide	61
5	Production of semi-regenerative (SR) catalyst for naphtha reforming	63
	Design bases	63
	Chemistry of key process steps	64
	Preparation of alumina extrudates	64
	Preparation of perrhenic acid	66
	Calcination and reduction of impregnated precatalyst	66
	Process description	74
	Section 100—Alumina support preparation	74
	Section 200—Perrhenic acid preparation	75
	Section 300—Impregnation and reduction	75
	Section 400—Hexachloroplatinic acid preparation	76
	Process discussion	88
	Raw materials and products	88
	Process configuration	90
	Sequence of operations, cycle time, and equipment sizing	90
	Materials of construction	92
	Byproducts and process waste effluents	93
	Cost estimates	95
	Cost estimates—Standalone SR catalyst plant	96
	Fixed capital costs	96
	Production costs	98
	Cost estimates—SR catalyst, with saleable gamma-alumina extrudates	100
	Cost estimates—SR catalyst, with CCR catalyst	101
~	Cost estimates—SR catalyst, with CCR catalyst and saleable gamma-alumina extrudates	102
6	Production of continuous catalyst regeneration (CCR) catalyst for naphtha reforming	111
	Design bases	112
	Chemistry of key process steps	112
	Preparation of alumina spheres	112
	Impregnation and Finishing	114
	Process description	121
	Section 100—Alumina support preparation	121
	Section 200—Impregnation and reduction	122
	Section 300—Hexachloroplatinic acid preparation Process discussion	123 139
	Raw materials	139
	Process configuration	140
	Sequence of operations, cycle time, and equipment sizing	
	Materials of construction	141 143
	Byproducts and process waste effluents	143
	Cost estimates	143
	Cost estimates—Standalone CCR catalyst plant	140
	Fixed capital costs	147
	Production costs	148
	Cost estimates—CCR catalyst, with SR catalyst	150
	Cost estimates—CCR catalyst, with SR catalyst and saleable gamma-alumina extrudates	150
7	Economic comparison of campaign strategies for production of semi-regenerative	101
÷	(SR) naphtha reforming catalyst, continuously regenerated naphtha reforming	
	catalyst (CCR), and saleable alumina extrudates	159
	Cost estimates	162
	Allocation of costs	162
	Cost estimates—Standalone alumina extrudates plant	162
	Fixed capital costs	162
	Production costs	164

Cost estimates—Alumina extrudates and SR catalyst	165
Cost estimates—Alumina extrudates, with SR catalyst and CCR catalyst	167
Cost comparison and evaluation	172
Appendix A—Patent summaries by assignee	174
Appendix B—Design and cost basis	208
Appendix C—Cited references	214
Appendix D—Periodic table and process flow diagrams	224

Tables

Table 2.1 Summary of process technologies for production SR and CCR catalysts	13
Table 2.2 Economic comparison of plant configurations for production of naphtha reforming catalysts	15
Table 4.1 Composition of typical reformer feed and product streams	22
Table 4.2 Operating conditions of CCR versus SR Platforming units	30
Table 4.3 Common components and properties of reforming catalysts	33
Table 4.4 Recent reforming catalyst patent activity—UOP	44
Table 4.5 Recent reforming catalyst patent activity—IFPEN	47
Table 4.6 Recent reforming catalyst patent activity—Sinopec	49
Table 4.7 Recent reforming catalyst patent activity—Chevron Phillips Chemical Co.	56
Table 5.1 SR catalyst for naphtha reforming—Design bases and assumptions	71
Table 5.2 SR catalyst for naphtha reforming—Batch mass balance	77
Table 5.3 SR catalyst for naphtha reforming—Major equipment	86
Table 5.4 SR catalyst for naphtha reforming—Utilities summary	89
Table 5.5 SR catalyst for naphtha reforming—Process effluent streams	94
Table 5.6 SR catalyst for naphtha reforming—Carbon emissions	95
Table 5.7 SR catalyst for naphtha reforming—Total capital investment for standalone plant	97
Table 5.8 SR catalyst for naphtha reforming—Variable production costs for standalone plant	99
Table 5.9 SR catalyst for naphtha reforming—Production costs for standalone plant	100
Table 5.10 SR catalyst for naphtha reforming—Total capital investment for process campaigned	
with alumina extrudates production	103
Table 5.11 SR catalyst for naphtha reforming—Production costs for process campaigned with	
alumina extrudates production	104
Table 5.12 SR catalyst for naphtha reforming—Total capital investment for process campaigned	
with CCR catalyst production	105
Table 5.13 SR catalyst for naphtha reforming—Production costs for process campaigned with CCR	
catalyst production	106
Table 5.14 SR catalyst for naphtha reforming—Total capital investment for process campaigned	
with CCR catalyst and alumina extrudates production	107
Table 5.15 Catalyst for SR naphtha reforming—Capital investment by section for process	
campaigned with CCR catalyst and alumina extrudates production	108
Table 5.16 SR catalyst for naphtha reforming—Production costs for process campaigned with CCR	
catalyst and alumina extrudates production	110
Table 6.1 CCR catalyst for naphtha reforming, integrated plant—Design bases and assumptions	117
Table 6.2 CCR catalyst for naphtha reforming—Batch mass balance	125
Table 6.3 CCR catalyst for naphtha reforming—Major equipment	136
Table 6.4 CCR catalyst for naphtha reforming—Utilities summary	139
Table 6.5 CCR catalyst for naphtha reforming—Process effluent streams	145
Table 6.6 CCR catalyst for naphtha reforming—Carbon emissions	146
Table 6.7 CCR catalyst for naphtha reforming—Total capital investment for standalone plant	148
Table 6.8 CCR catalyst for naphtha reforming—Variable production costs for standalone plant	149
Table 6.9 CCR catalyst for naphtha reforming—Production costs for standalone plant	150
Table 6.10 CCR catalyst for naphtha reforming—Total capital investment for process campaigned	
with SR catalyst production	153

Table 6.11 CCR catalyst for naphtha reforming—Production costs for process campaigned with SR	
catalyst production	154
Table 6.12 CCR catalyst for naphtha reforming—Total capital investment for process campaigned with SR catalyst and alumina extrudates production	155
Table 6.13 Catalyst for CCR naphtha reforming—Capital investment by section for process campaigned with SR catalyst and alumina extrudates production	156
Table 6.14 CCR catalyst for naphtha reforming—Production costs for process campaigned with SR catalyst and alumina extrudates production	158
Table 7.1 Comparison of base-case production costs for CCR catalyst in standalone and integrated plants	160
Table 7.2 Comparison of base-case production costs for CCR catalyst in standalone and	
integrated plants	161
Table 7.3 Alumina extrudates—Total capital investment for standalone plant	163
Table 7.4 Alumina extrudates—Variable production costs for standalone plant	165
Table 7.5 Alumina extrudates—Production costs for standalone plant	166
Table 7.6 Alumina extrudates—Total capital investment for process campaigned with SR	
catalyst process	168
Table 7.7 Alumina extrudates—Production costs for process campaigned with SR catalyst process	169
Table 7.8 Alumina extrudates—Total capital investment for process campaigned with SR and CCR	
catalyst production	170
Table 7.9 Alumina extrudates—Production costs for process campaigned with SR and CCR	
	171
Table 7.10 Economic comparison of plant configurations for production of naphtha reforming catalysts	173

Figures

Figure 2.1 Global refinery distillation and conversion unit capacity trends (1990–2018)	11
Figure 2.2 Operating schedule for standalone and campaigned processes	14
Figure 2.3 Campaigned production of CCR catalyst, SR catalyst, and alumina extrudates—Factors	
of production including 15% ROI	16
Figure 2.4 Production of CCR catalyst, SR catalyst, and alumina extrudates—Carbon footprints	17
Figure 4.1 Catalytic reforming reaction scheme	23
Figure 4.2 Semi-regenerative catalytic reforming—Block flow diagram	26
Figure 4.3 Light hydrocarbon aromatization technology, fixed bed (LHAT-F)—Block flow diagram	28
Figure 4.4 Continuous catalytic regeneration reforming—Block flow diagram	29
Figure 4.5 Continuous catalytic reforming with counter-current flow—Block flow diagram	29
Figure 4.6 Radial flow reactor	30
Figure 4.7 Texicap™ radial reactor with decreased catalyst dead space	31
Figure 4.9 Aromatic selectivity of zeolite-based catalyst	35
Figure 4.10 Effect of promoter system on reformate yield	39
Figure 4.11 Effect of promoter system on stability	39
Figure 4.12 Effect of promoter system on surface area aging	39
Figure 5.2 SR catalyst for naphtha reforming—Operations sequence (first 4 cycles)	91
Figure 5.3 SR catalyst for naphtha reforming—Kneader, model IPI 1500 AP/T	93
Figure 6.2 CCR catalyst for naphtha reforming—Operations sequence (first 4 cycles)	142

Appendix D Figures

Figure 4.8 Periodic table of the elements, PEP 2021	225
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 1 of 4)	226
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 2 of 4)	227
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 3 of 4)	228
Figure 5.1 SR catalyst for naphtha reforming—Process Flow Diagram (page 4 of 4)	229
Figure 6.1 CCR catalyst for naphtha reforming—Process Flow Diagram (page 1 of 3)	230
Figure 6.1 CCR catalyst for naphtha reforming—Process Flow Diagram (page 2 of 3)	231
Figure 6.1 CCR catalyst for naphtha reforming—Process Flow Diagram (page 3 of 3)	232

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient dor any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

