

Next Generation Carbon Capture

PEP Report 180F October 2021

Process Economics Program

Contacts

Rajiv Narang

Executive Director, Process Economics Program rajiv.narang@ihsmarkt.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Report 180F

Next Generation Carbon Capture

Rajiv Narang, Executive Director

Abstract

Net-zero emissions targets and decarbonization ambitions are driving demand for carbon sequestration solutions. Currently, countries that are responsible for 67% of the global greenhouse gas (GHG) emissions have set net-zero targets. Among these countries, the top-six emitters (50% emissions) have proposed carbon sequestration solutions to meet their net-zero targets. The IEA Sustainable Development Scenario also stresses the role of carbon capture, utilization, and storage (CCUS). Although in the short run, the carbon captured is expected to be from power-generating plants using coal as fuel; the applications will swiftly move on to natural gas combined cycle plants, hard-to-abate sectors like cement, iron and steel, and then to direct air capture. Blue hydrogen, which plays a critical bridge in the energy transition scenario, is also dependent on CCUS.

This report covers:

- Postcombustion carbon capture using a novel-activated-hindered amine (AMP/Piperazine blend) solvent
- Direct air capture using chemicals
- Postcombustion intensified carbon capture using an adsorbent (metal organic framework)

Apart from the technical and economic analysis, we also include in this report a material balance table, a sized equipment list, and a process flow diagram for each technology. An Excel[®]-based tool, iPEP Navigator[®] is provided for an easy economic analysis in different regions of the world.

The technological and economic assessment of the process is the Process Economics Program's (PEP) independent interpretation of a potential commercial process, which is based on information presented in open literature, such as patents or technical articles, and it may not reflect in whole or in part the actual plant configuration. We do believe that these sources are sufficient to represent the process and process economics within the range of accuracy necessary for economic evaluations of conceptual process designs.

It needs to be recognized that the novel technologies and solutions currently available in the market are not commercially verified at scale. The performance advertised by the technology provider needs substantiation by commercial deployment. Despite such hurdles, the urgency to seek more desirable solutions is driving technology improvements, some of which are marginal and some which claim to be revolutionary. Against this background, this report attempts to clear the air on technical and economic analysis of new technologies, while pointing out their potential risks and advantages.

Contents

1	Introduction	7
2	Summary	8
3	Industry review	11
4	Technology review	13
	Absorption using a novel solvent	13
	Desirable property of solvents	14
	Absorption mechanism of amines	15
	Absorption	16
	Regeneration	17
	Other advantages of AMP + PZ [7]	18
	Properties of solvents	19
	Common process flow schemes	20
	Direct air capture	23
	Chemistry	24
	Absorption section	26
	Causticization	28
	Calciner	29
	Slaker	29
	Risk analysis	30
	Temperature swing adsorption	32
	Amine functionalized silica	33
	Sorption selection criteria	34
	Svante Vlexotherm™ technology	34
	CO ₂ MENT	35
	Svante Intensified Rapid Temperature Swing Adsorption Process	35
	Risk analysis	38
5	Carbon dioxide absorption using activated AMP	39
	Introduction	39
	Process description	40
	Section 100—Carbon capture	40
	Section 200—CO ₂ compression	40
	Process discussion	43
	Material of construction	44
	Cost estimate	44
	Capital cost	45
	Production cost	47
	Discussion	49
6	Direct air capture using chemicals	51
	Introduction	51
	Process description	52
	Section 100—Carbon capture	53
	Section 200—CO ₂ compression	53
	Process discussion	57
	Material of construction	58
	Cost estimate	59
	Capital cost	59
	Production cost	59
	Discussion	63
7	Rapid temperature swing adsorption	66

Introduction	66
Process description	67
Section 100—Carbon capture	67
Section 200—CO ₂ compression	67
Process discussion	70
Material of construction	71
Cost estimate	71
Capital cost	71
Production cost	72
Discussion	75
Appendix A—Design and cost basis	77
Appendix B—Cited references	82
Appendix C—Process flow diagrams	85

Tables

Table 2.1 Overall summary of carbon capture technologies	9
Table 4.1 Common sources of postcombustion flue gases	13
Table 4.2 Common amine-based solvents	13
Table 4.3 Properties of common pure solvents	19
Table 5.1 Design basis for CO ₂ absorption using activated AMP	39
Table 5.2 Stream balance, kg/s	41
Table 5.3 Major equipment list	42
Table 5.4 Utility summary	43
Table 5.5 Critical performance parameters	43
Table 5.6 Water footprint	44
Table 5.7 Waste summary	44
Table 5.8 Capital cost—Total capital investment	46
Table 5.9 Capital cost by section—Capital investment by section	47
Table 5.10 Production costs	48
Table 6.1 Design basis for DAC using chemicals	52
Table 6.2 Stream balance, kg/s	54
Table 6.3 Major equipment list	56
Table 6.4 Utility summary	57
Table 6.5 Critical performance parameters	58
Table 6.6 Water footprint	58
Table 6.7 Waste summary	59
Table 6.8 Direct air capture—Total capital investment	60
Table 6.9 Direct air capture—Capital investment by section	61
Table 6.10 Direct air capture—Production costs	62
Table 6.11 Summary of cost performance	65
Table 7.1 Design basis for rapid temperature swing adsorption	66
Table 7.2 Stream balance, kg/s	68
Table 7.3 Major equipment list	69
Table 7.4 Utility summary	70
Table 7.5 Critical performance parameters	71
Table 7.6 Water footprint	71
Table 7.7 Waste summary	71
Table 7.8 Rapid temperature swing adsorption—Total capital investment	72
Table 7.9 Rapid temperature swing adsorption—Capital investment by section	73
Table 7.10 Rapid temperature swing adsorption—Production costs	74
Table 7.11 Summary of cost performance	76

Figures

Figure 3.1 Carbon capture projects based on emission source	12
Figure 4.1 Primary amine MEA structure	15
Figure 4.2 Hindered amine AMP structure	16
Figure 4.3 Flow scheme for basic gas sweetening	20
Figure 4.4 Flow scheme of absorber intercooler	21
Figure 4.5 Flow scheme of rich amine split	22
Figure 4.6 Chemistry of direct air capture using chemicals	26
Figure 4.7 Direct air capture using chemicals	27
Figure 4.8 PVC structured packing from Brentwood	27
Figure 4.9 Cutaway section of the Carbon Engineering absorber	28
Figure 4.10 Rendering of 1point5 DAC plant	31
Figure 4.11 Adsorption of carbon dioxide	32
Figure 4.12 Rapid rotating adsorber	36
Figure 4.13 Regenerative air pre-heater	37
Figure 4.14 Rapid TSA cycle	37

Appendix C Figures

Figure C1 Process flow diagram activated AMP—Section 100 carbon capture	86
Figure C2 CO ₂ compression—Section 200	87
Figure C3 Process flow diagram direct air capture by chemicals—Section 100 carbon capture	
(Adapted from [13])	88
Figure C4 Rapid temperature swing adsorption—Section 100 carbon capture	89

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient dor any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

