Solvent-Based Recycling of Waste Plastics

PEP Report 199H
October 2021
Contacts

Susan L. Bell
Director of Polymer Processes
susan.bell@ihsmarkit.com

Michael Arne
Vice President, Process Economics Program
michael.arne@ihsmarkit.com
PEP Report 199H

Solvent-Based Recycling of Waste Plastics

Susan L. Bell, Director of Polymer Processes

Abstract

Plastics provide many benefits to society. However, with plastic consumption comes plastic waste. Improper plastic waste management is a growing problem. Solvent-based purification (SBP) of waste plastics is one way to address this problem. This type of recycling method uses a selective solvent dissolution process to remove impurities from postindustrial and postconsumer plastic, thereby recovering plastics of suitable quality for reuse. The clean polymer can be recovered from the solution by precipitation. Plastics recycling via SBP is considered a physical recycling process rather than a chemical recycling process. There are several processes that have been developed based on solvent-based recycling of plastic waste. Proctor & Gamble’s PureCycle™ Process uses a solvent dissolution process to recover virgin-like recycled polypropylene (PP). APK AG’s Newcycling® Process recycles multilayer plastics to yield polymers with properties close to virgin materials. Fraunhofer’s CreaSolv® Process selectively dissolves targeted polymer from plastic waste, removing contaminants, and precipitating the resulting polymer fraction. Polystyvert uses a solvent to dissolve waste polystyrene (PS), filtering out contaminants from the PS solution and then recrystallizing the polymer.

In this report, IHS Markit presents the industrial status and a technology review of solvent-based recycling of waste plastics. We present the process economics for

- The PureCycle™ Process for postconsumer PP waste
- A selective solvent dissolution-precipitation process for postconsumer PS foam demolition waste
- A selective solvent dissolution-precipitation process for postindustrial polyethylene/polyamide-6 (PE/PA-6) film waste
Contents

1 **Introduction** 8

2 **Summary** 10
 - Introduction 10
 - Industrial aspects 10
 - Technical aspects 11
 - Procter & Gamble's PureCycle™ Process 11
 - Fraunhofer's CreaSolv® Process 13
 - APK AG's Newcycling® Process 14
 - Economic aspects 15
 - Carbon emission summary 19
 - Conclusion 19

3 **Industry status** 21
 - Introduction 21
 - Key players and processes 21
 - APK AG's Newcycling® Process 21
 - Fraunhofer's CreaSolv® Process 22
 - PolystyreneLoop 23
 - Procter & Gamble's PureCycle™ Process 24
 - PureCycle Technologies Inc 24
 - Saperatec GmbH 25
 - Solvay Vinyloop® 25
 - Trinseo 25

4 **Technology** 27
 - Introduction 27
 - General 27
 - Plastic recycling 27
 - Solvent-based purification or selective solvent dissolution-precipitation 29
 - Processes 31
 - APK AG's Newcycling® Process 31
 - Fraunhofer's CreaSolv® Process 33
 - Polystyfer's process 35
 - Procter & Gamble's PureCycle™ Process 37

5 **Recycling of polypropylene waste based on PureCycle™ Process** 41
 - Introduction 41
 - Process description 41
 - Section 100—Raw material preprocessing section 48
 - Section 200—Polymer purification section 48
 - Section 300—Product finishing section 49
 - Section 400—Solvent recovery and purification section 49
 - Process discussion 49
 - Plant design capacity 49
 - Feedstock 49
 - Raw material preprocessing 50
 - Polypropylene/n-butane phase behavior 51
 - Liquid-liquid extraction 54
 - Dissolution, sedimentation, and purification 54
 - Polymer separation 55
 - Solvent recovery and purification 55
 - Yield 55
6 Recycling of polystyrene waste by a selective solvent dissolution-precipitation process

Introduction

Process description

Section 100—Raw material preprocessing section
Section 200—Polymer purification section
Section 300—Product finishing section
Section 400—Solvent recovery and purification section

Process discussion

Plant design capacity
Feedstock
Solvent and antisolvent
Polymer dissolution and precipitation
Flame retardant separation
Solvent recovery
Material of construction
Environmental

Cost estimate

Capital costs
Production costs
Sensitivity analysis

7 Recycling of multilayer film waste by a selective solvent dissolution-precipitation process

Section 100—Raw material preprocessing section
Section 200—Polymer purification section
Section 300—Product finishing section
Section 400—Solvent recovery and purification section

Process discussion

Plant design capacity
Feedstock
Solvent
Solid-liquid separation
Solvent recovery
Yield
Product
Material of construction
Environmental

Cost estimate

Capital costs
Production costs
Sensitivity analysis

Appendix A—Patent summaries
Appendix B—Design and cost basis
Appendix C—Cited references
Appendix D—Process flow diagrams
Tables

Table 2.1 Design basis 15
Table 2.2 Capital estimate comparison 16
Table 2.3 Production costs 17
Table 2.4 Carbon dioxide emission 19
Table 2.5 Comparison of selected recycling technologies 20
Table 5.1 Recycling of PP waste based on the PureCycle™ Process—Design bases 42
Table 5.2 Recycling of PP waste based on the PureCycle™ Process—Major stream flows 43
Table 5.3 Recycling of PP waste based on the PureCycle™ Process—Major equipment 45
Table 5.4 Recycling of PP waste based on the PureCycle™ Process—Utilities summary 48
Table 5.5 Properties of n-butane 52
Table 5.6 Summary of major waste streams 56
Table 5.7 Carbon dioxide emission 57
Table 5.8 Recycling of PP waste based on the PureCycle™ Process—Total capital investment 60
Table 5.9 Recycling of PP waste based on the PureCycle™ Process—Capital investment by section 61
Table 5.10 Recycling of PP waste based on the PureCycle™ Process—Production costs 63
Table 6.1 Recycling of postconsumer PS waste by a selective solvent dissolution-precipitation process—Design bases 67
Table 6.2 Recycling of postconsumer PS waste by a selective solvent dissolution-precipitation process—Major stream flows 68
Table 6.3 Recycling of postconsumer PS waste by a selective solvent dissolution-precipitation process—Major equipment 70
Table 6.4 Recycling of postconsumer PS waste by a selective solvent dissolution-precipitation process—Utilities summary 72
Table 6.5 Risk value for different solvents 74
Table 6.6 HSP for DMM/PS and DPM/PS 74
Table 6.7 Properties of DMM and DPM 75
Table 6.8 Comparison of virgin PS and cleaned recycled PS 76
Table 6.9 Summary of major waste streams 76
Table 6.10 Carbon dioxide emission 77
Table 6.11 Recycling of postconsumer PS waste by a selective solvent dissolution-precipitation process—Total capital investment 80
Table 6.12 Recycling of postconsumer PS waste by a selective solvent dissolution-precipitation process—Capital investment by section 81
Table 6.13 Recycling of postconsumer PS waste by a selective solvent dissolution-precipitation process—Production costs 83
Table 7.1 Recycling of postindustrial PE/PA-6 multilayer film waste by a selective solvent dissolution-precipitation—Design bases 88
Table 7.2 Recycling of postindustrial PE/PA-6 multilayer film waste by a selective solvent dissolution-precipitation—Major stream flows 89
Table 7.3 Recycling of postindustrial PE/PA-6 multilayer film waste by a selective solvent dissolution-precipitation—Major equipment 91
Table 7.4 Recycling of postindustrial PE/PA-6 multilayer film waste by a selective solvent dissolution-precipitation—Utilities summary 93
Table 7.5 Properties of methylcyclohexane 95
Table 7.6 HSP for PA-6/methylcyclohexane system and LDPE/methylcyclohexane system 95
Table 7.7 Product properties of recycled LDPE and PA-6 96
Table 7.8 Summary of major waste streams 97
Table 7.9 Carbon dioxide emission 97
Table 7.10 Recycling of postindustrial PE/PA-6 multilayer film waste by a selective solvent dissolution-precipitation—Total capital investment 100
Table 7.11 Recycling of postindustrial PE/PA-6 multilayer film waste by a selective solvent dissolution-precipitation—Capital investment by section 101
Table 7.12 Recycling of postindustrial PE/PA-6 multilayer film waste by a selective solvent dissolution-precipitation—Production costs 103
Figures

Figure 1.1 Polymer recycling processes
Figure 2.1 Polymer recycling processes
Figure 2.2 Simplified block diagram of PP waste recycling based on the PureCycle™ Process
Figure 2.3 PolystyreneLoop EPS/XPS recycling based on the CreaSolv® technology
Figure 2.4 Simplified block diagram of PE/PA multilayer film waste recycling based on APK NewCycling® Process
Figure 2.5 Sensitivity of estimated cleaned recycled PS product values to parameters
Figure 2.6 Sensitivity of estimated cleaned LDPE and PA-6 product values to different parameters
Figure 4.1 Polymer recycling categories
Figure 4.2 Newcycling® Process for PE/PA-6 multilayer films
Figure 4.3 PolystyreneLoop EPS/XPS recycling based on the CreaSolv® technology
Figure 4.4 Chemical structure of solvents and solubility of PS at 50°C
Figure 4.5 Polystyvert's PS waste recycling process (WO 2020082184)
Figure 4.6 PureCycle recycling process for recycled PP
Figure 5.1 Simplified block diagram of PP waste recycling based on the PureCycle™ Process
Figure 5.2 Recycling of polypropylene waste based on the PureCycle™ Process (Sheet 1 of 4)
Figure 5.3 Raw material preprocessing
Figure 5.4 P-T diagram for 1 wt% PP/n-butane
Figure 5.5 P-T diagram for 5 wt% PP/n-butane
Figure 5.6 P-T diagram for 10 wt% PP/n-butane
Figure 5.7 Effect of PP bale price on estimated UPRP cost
Figure 6.1 Simplified block diagram of EPS/XPS waste recycling based on CreaSolv® Process
Figure 6.2 Recycling of EPS/XPS waste by a selective solvent dissolution-precipitation process (Sheet 1 of 3)
Figure 6.3 Effect of densified waste EPS feedstock price on estimated product value of cleaned recycled PS
Figure 6.4 Sensitivity of estimated cleaned recycled PS product values to parameters
Figure 7.1 Simplified block diagram of PE/PA multilayer film waste recycling based on APK NewCycling® Process
Figure 7.2 Recycling of postindustrial PE/PA-6 multi-layer film waste by a selective solvent dissolution-precipitation (Sheet 1 of 3)
Figure 7.3 Effect of plastic film bale price on estimated cleaned LDPE and PA-6 granule product value
Figure 7.4 Sensitivity of estimated cleaned LDPE and PA-6 product values to different parameters

Appendix D Figures

Figure 5.2 Recycling of polypropylene waste based on the PureCycle™ Process (Sheet 1 of 4)
Figure 5.2 Recycling of polypropylene waste based on the PureCycle™ Process (Sheet 2 of 4)
Figure 5.2 Recycling of polypropylene waste based on the PureCycle™ Process (Sheet 3 of 4)
Figure 5.2 Recycling of polypropylene waste based on the PureCycle™ Process (Sheet 4 of 4)
Figure 6.2 Recycling of EPS/XPS waste by a selective solvent dissolution-precipitation process (Sheet 1 of 3)
Figure 6.2 Recycling of EPS/XPS waste by a selective solvent dissolution-precipitation process (Sheet 2 of 3)
Figure 6.2 Recycling of EPS/XPS waste by a selective solvent dissolution-precipitation process (Sheet 3 of 3)
Figure 7.2 Recycling of postindustrial PE/PA-6 multi-layer film waste by a selective solvent dissolution-precipitation (Sheet 1 of 4)
Figure 7.2 Recycling of postindustrial PE/PA-6 multi-layer film waste by a selective solvent dissolution-precipitation (Sheet 2 of 4)
Figure 7.2 Recycling of postindustrial PE/PA-6 multi-layer film waste by a selective solvent dissolution-precipitation (Sheet 3 of 4)
Figure 7.2 Recycling of postindustrial PE/PA-6 multi-layer film waste by a selective solvent dissolution-precipitation (Sheet 4 of 4)