

Methanol

PEP Report 43F November 2019

Syed Naqvi Director Research and Analysis

Dipti Dave Principal Research Analyst

Process Economics Program

PEP Report 43F

Methanol

Syed Naqvi, Director Research and Analysis **Dipti Dave**, Principal Research Analyst

Abstract

Methanol is a large-volume commodity chemical that belongs to the alcohol family of products. In 2018, its worldwide production was over 79 million metric tons. Globally, methanol production capacity more than doubled over the past decade. Northeast Asia accounted for more than threequarters of the new capacity brought onstream during that period. Interestingly, China is the sole producing country in the Northeast Asian region.

Methanol is commercially a very important chemical as it is used not only in its native state of methanol in many industrial applications but also finds wide use as a raw material for a host of industrial chemicals as outlined in this report. Major sources of methanol production are natural gas and coal. Several types of methanol technologies have been developed by various licensors. Notable among those licensors are Lurgi, Johnson-Davy, Haldor Topsoe, Casale, and Mitsubishi Gas Chemicals. Besides these licensors, there are several other licensors that also license their own version of the methanol technologies. Included in those licensors are companies such as Uhde, Toyo, Jacobs, etc. Other companies like Foster Wheeler and Linde are also well known in the realm of methanol production as licensor for syngas reformer technologies.

In view of the increasing commercial importance of methanol, Process Economics Program (PEP) of IHS Markit decided early this year to carry out a detailed technoeconomic study of the major methanol manufacturing technologies based on the latest developments taking place in those technologies. This PEP report presents the results of that study.

As a brief prelude for the readers, four licensed technologies are examined and analyzed from a technoeconomic point of view.

- Haldor Topsoe Autothermal Reforming-based Methanol Production Technology
- Casale Combined Reforming-based Methanol Production Technology
- Lurgi Combined Reforming-based Methanol Production Technology
- Johnson Matthey/Davy Gas-Heated Reforming-based Methanol Production Technology

Each evaluation of the technology entails a series of steps involving a brief process review, followed by a presentation of more detailed parametric information about the technology such as key features of the technology, process operation key conditions, process description, material and energy balance, equipment sizes, utilities consumption, and finally a pictorial representation of the process in the form of process flow diagram. Process economics are presented toward the end of each chapter.

One of the key points of evaluation in this report is that the process waste heat recovery scheme is designed in a thermally balanced way so that there is no export or import of steam from the process.

The plant requires only electricity, (makeup) cooling water, and some process water from an external supply source. Oxygen is supplied from an integrated air separation plant.

Based on above scheme, capital cost and production cost estimates are presented for each process producing 5,000 metric tons/day of AA-grade methanol.

Also attached with the report is iPEP Navigator, which is an interactive costing tool that allows report readers to select and compare the processes economics in different regions of world.

These and other technologies—past, present, and emerging ones, for PO production are reviewed with a bibliography and abstracts for relevant patents since the 1950s. The industry status is updated, the modern PO processes are summarized in terms of comparative economics and the key process indicators (KPI) of capital intensity, energy intensity, carbon efficiency, and carbon intensity. Lastly, the iPEP Navigator PO tool is attached to the electronic version of this report. The iPEP Navigator interactive module provides an economic snapshot for each process, allowing the user to select and compare the processes, units, and regions of interest.

Contents

1	Introduction	10
	Process technology	10
2	Summary	12
	Commercial overview	12
	Methanol producing companies	13
	Industrial aspects	15
	Methanol properties	15
	Technical aspects	16
	Synthesis generation	16
	Methanol converter technology	17
	Haldor Topsoe autothermal reforming-based process	17
	Casale combined reforming-based process	19
	Lurgi combined reforming-based process	20
	Economic aspects	22
	Scope of process economics	24
	Capital cost comparison	25
	Production costs comparison	26
3	Industry status	29
	Producing companies	31
	Mega-methanol plants	33
4	Introduction	34 34
	Process technology	34
	Product properties	35
	Developing technologies	36
	Feedstock	36
	Natural gas	36
	Natural gas-based licensors	36
	Major natural-gas reforming technologies	37
	Types of steam reformers	37
	Feedstock pretreatment	40
	Prereforming	41
	Steam-carbon molar ratio	41
	Reforming temperature and pressure	42
	Methanol production process steps	43
	Steam methane reformer chemistry	44
	Steam methane reforming scheme	44
	Partial oxidation (POX) chemistry	45
	Combined reforming chemistry	46
	Autothermal reforming (ATR) chemistry	47
	Methanol synthesis reaction chemistry Methanol synthesis reaction kinetics	49 51

Water gas shift reaction	53
CO ₂ dry reforming	53
Methane cracking	53
Product properties	54
Development status	55
Licensor design advances	55
JM/Davy advanced gas-heated reformer	55
Lurgi's two-stage methanol synthesis converter	58
Oxygen-blown autothermal reformer technology	60
Air pre-heat steam methane reformer	62
Status of catalyst development	62
Reforming catalysts	62
Methanol synthesis catalysts	63
Typical methanol synthesis converter configurations	63
Process technology alternatives	64
Major commercial methanol licensor offerings	64
Haldor-Topsoe commercial technology	65
H-T Conventional steam methane reforming	65
H-T Conventional steam methane reformer	66
H-T Combined reforming process	67
H-T Pure autothermal reforming	68
H-1 Heat exchange reforming technology	70
Haldor Topsoe methanol converter catalyst	/1
Haldor-Topsoe methanol converter technology	/1
Haldor-Topsoe methanol purification by distillation	72
JIM/Davy low pressure methanol technology	73
IM/Davy and heated referming	74
JW/Davy gas fielded reforming Series and Parallel Configuration of IM/Dawy SMP and POX Reformers	73
Conventional IM/Davy Tube Cooled Methanol Converter	70
Linde isothermal converter	80
IM/Davy methanol purification distillation	81
Casale commercial technology	81
Casale syngas generation by combined reforming	81
Casale methanol synthesis	82
Casale Preforming reactor technology	83
Methanol Casale ARC and Radial Converter	84
Casale 3-column methanol distillation	85
Lurgi methanol process technology	86
Toyo Engineering methanol process	93
Toyo recent commercial methanol plant experience	93
Toyo MRF-Z methanol process	94
Toyo steam methane reforming	94
Toyo process overview	94
Toyo SMR catalyst technology	95
Toyo MRF-Z methanol reactor design	96
l oyo s metnanol synthesis catalyst	98
Teaction Conditions/Parameters	98
Methanol process catalysts	99
Synthesis generation	99
Methanol converter technology	100
Methanol production by Haldor Topsoe Autothermal Reforming-based process	101
Process overview	101

5

Methanol production 103 Scope of process economics 104 Process description 105 Syngas production—Section 100 105 Methanol production—Section 200 108 Process discussion 110 Unreacted syngas recycling 110 Unreacted syngas recycling 110 Methanol converters sizing estimate 111 Steam consumption 112 Miscellaneous plant sections 112 Miscellaneous plant sections 120 Fixed capital costs 120 Production costs 120 Process discussion 130 Process discussion 132 Section 100—Syngas generation 128 Section 100—Syngas generation 138 Process discussion 135 Feedstock 135 Process discussion 135 Feedstock 136 Steam methane reformer 136 Vater apit dosts 140 Production costs 140 Production costs 140 Production costs 149		Syngas generation	101
Scope of process economics 104 Process description 105 Syngas production—Section 200 108 Process discussion 110 Inreacted syngas recycling 110 Methanol product purification 111 Steam consumption 111 Plant startup boller/s 111 Materials of construction 112 Cost estimates 120 Fixed capital costs 120 Process discussion 122 Cost estimates 120 Fixed capital costs 120 Fixed capital costs 120 Production costs 120 Process discussion 128 Section 100—Syngas generation 130 Process discussion 135 Freed capital costs 136 Process discussion 136 Process discussion 137 Cost estimates 140 Process discussion 136 Process discussion 136 Process discussion 137 Cost estimates 140 Process discussion 136 Process discussion 137 Cost estimates 140 Production costs 140 Produ		Methanol production	103
Process overview 104 Process description 105 Syngas production—Section 100 105 Methanol production—Section 200 108 Process discussion 110 Feedstock 110 Methanol converters sizing estimate 110 Methanol converters sizing estimate 111 Methanol converters sizing estimate 111 Methanol product purification 111 Naterials of construction 112 Miscellaneous plant sections 120 Fixed capital costs 120 Production costs 120 Production costs 120 Process discussion 132 Process discussion 138 Section 100—Syngas generation 138 Section 200—Methanol production by Casale combined reforming 128 Section 200—Methanol production 136 Facedstock 135 Facedstock 136 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Production costs 140 Production costs 140 Production costs 140 Process discussion 147 Cost bases 14		Scope of process economics	104
Process description 105 Syrgas production—Section 200 108 Process discussion 110 Process discussion 110 Unreacted syrgas recycling 110 Methanol converters sizing estimate 110 Methanol converters sizing estimate 111 Plant startup boiler/s 111 Plant startup boiler/s 111 Materials of construction 112 Miscellaneous plant sections 112 Cost estimates 120 Production costs 120 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 128 Section 200—Methanol production 130 Process discussion 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Production costs 140 Production costs 149		Process overview	104
Syngas production—Section 100 105 Methanol production—Section 200 108 Process discussion 110 Feedstock 110 Unreacted syngas recycling 110 Methanol converters sizing estimate 110 Methanol product purification 111 Steam consumption 111 Protest atrup boiler/s 111 Materials of construction 112 Miscellaneous plant sections 120 Fixed capital costs 120 Production costs 120 Production by Casale Combined Reforming-Based Process 127 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 128 Section 100—Syngas generation 136 Process discussion 136 Predestock 135 Feedstock 136 Natural gas-steam blending 136 Materials of construction 137 Cost estimates 140 Production costs 140 Production costs 140 Production costs 149 Production costs 149 Production costs 149 Process descurption—Methanol production costs 149		Process description	105
Internation productionsecular 200 100 Process discussion 110 Feedstock 110 Unreacted syngas recycling 110 Methanol converters sizing estimate 110 Methanol product purification 111 Steam consumption 111 Plant startup boiler/s 111 Miscellaneous plant sections 112 Miscellaneous plant sections 120 Fixed capital costs 120 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 128 Section 100—Syngas generation 135 Freedstock 135 Natural gas-steam blending 136 Vaste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Cost estimates 140 Production costs 149 Effect of operating level on production co		Syngas production—Section 100 Methonal production—Section 200	105
Process discussion 110 Unreacted syngas recycling 110 Methanol converters sizing estimate 110 Methanol converters sizing estimate 111 Steam consumption 111 Plant startup bolier/s 111 Materials of construction 112 Cost estimates 120 Production costs 120 Production costs 120 Production costs 120 Production costs 120 Process discussion 121 Cost estimates 120 Production costs 120 Production costs 120 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup bolier/s 140 Production costs 140 Production costs 140 Project construction 137 Cost bases 147 Cost bases 149 Project construction ti		Process discussion	110
Implementation 110 Unreacted syngas recycling 110 Methanol converters sizing estimate 110 Methanol product purification 111 Steam consumption 111 Plant startup boiler/s 111 Miscellaneous plant sections 112 Cost estimates 120 Fixed capital costs 120 Production costs 120 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 128 Section 200—Methanol production 130 Process discussion 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boiler/s 140 Production costs 149 Production by combined reforming-based Process 151 Syngas production by Lurgi combine		Fodstock	110
Methanol product purification 110 Methanol product purification 111 Steam consumption 111 Plant startup boiler/s 111 Materials of construction 112 Cost estimates 120 Fixed capital costs 120 Production costs 120 Production costs 120 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 128 Section 200—Methanol production 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Production costs 140 Production costs 150 Syngas productin by Curgi combined reforming-based Process		I preacted syngas recycling	110
Methanol product purification 111 Steam consumption 111 Plant startup boller/s 111 Materials of construction 112 Miscellaneous plant sections 120 Fixed capital costs 120 Production costs 120 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 128 Section 100—Methanol production 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boller/s 136 Materials of construction 137 Cost estimates 140 Production costs 140 Design conditions 147 Capital investment 147 Project construction timing 149 Production costs 149 Production costs 149 Production by combined reforming-based Process 151 Syngas production by combined reforming for methanol 15		Methanol converters sizing estimate	110
Steam consumption 111 Plant startup boiler/s 111 Materials of construction 112 Miscellaneous plant sections 112 Cost estimates 120 Fixed capital costs 120 Production costs 120 6 Methanol production by Casale Combined Reforming-Based Process 127 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup bolier/s 136 Materials of construction 137 Cost estimates 140 Production costs 140 Production costs 140 Production costs 141 Production costs 140 Production costs 141 Production costs 142 Available utilities 143 Production costs 151 Syngas production by combined reforming-based Process 151		Methanol product purification	111
Plant startup boiler/s 111 Materials of construction 112 Miscellaneous plant sections 112 Cost estimates 120 Fixed capital costs 120 Production costs 120 6 Methanol production by Casale Combined Reforming-Based Process 127 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Production costs 140 Production costs 140 Production costs 140 Design conditions 147 Cost bases 140 Production costs 149 Production toning 149 Available utilities 149 Production by combined reforming-based Process 151 Syngas production by combined reforming for methano		Steam consumption	111
Materials of construction 112 Miscellaneous plant sections 112 Cost estimates 120 Fixed capital costs 120 Production costs 120 6 Methanol production by Casale Combined Reforming-Based Process 127 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Vaste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Cost estimates 140 Production costs 140 Production by combined reforming-based Process 151 Syngas production by combined reforming-based Process 152 Section 100—Syngas ge		Plant startup boiler/s	111
Miscellaneous plant sections 112 Cost estimates 120 Fixed capital costs 120 Production costs 120 6 Methanol production by Casale Combined Reforming-Based Process 120 7 Process description-Methanol production by Casale combined reforming 128 Section 100—Syngas generation 130 9 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boiler/s 140 Fixed-capital costs 140 Production costs 140 Production costs 140 Design conditions 147 Cost bases 140 Project construction timing 149 Available utilities 149 Production costs 149 Process description—Methanol production costs 151 Syngas production by Lurgi combined reforming-based Process 152 Section 100—Syngas generation 153 Stean methaner feformer 152<		Materials of construction	112
Cost estimates120Fixed capital costs120Production costs1206Methanol production by Casale Combined Reforming-Based Process127Process description—Methanol production by Casale combined reforming128Section 100—Syngas generation130Process discussion135Feedstock135Natural gas-steam blending136Steam methane reformer136Waste heat recovery136Plant startup boiler/s136Materials of construction137Cost estimates140Production costs140Production costs147Capital investment147Project construction timing149Production costs149Production costs151Process discussion151Process discussion151Project construction by Combined reforming-based Process151Syngas production by Curgi combined reforming-based Process151Syngas production by Curgi combined reforming for methanol151Process discussion152Section 100—Syngas generation152Section 200—Methanol production by Lurgi two-stage process152Section 200—Methanol production153Process discussion159Natural gas-steam blending159Steam methane reformer150Section 200—Methanol production153Process discussion159Section 200—Methanol production159Natural		Miscellaneous plant sections	112
Fixed capital costs 120 Production costs 120 Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 128 Section 200—Methanol production 128 Section 200—Methanol production 138 Fredestock 135 Feedstock 136 Vaste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Cost estimates 140 Production costs 140 Project construction timing 149 Available utilities 149 Production costs 149 Production costs 149 Process description—Methanol production costs 151 Syngas production by combined reforming-based Process 151 Syngas production by combined reforming for methanol 151 Process description—Methanol production costs <td></td> <td>Cost estimates</td> <td>120</td>		Cost estimates	120
Production costs 120 6 Methanol production by Casale Combined Reforming-Based Process 127 Process descriptionMethanol production by Casale combined reforming 128 Section 100Syngas generation 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Cost estimates 140 Pixed-capital costs 140 Production costs 140 Production costs 140 Production costs 147 Cost bases 147 Cost bases 147 Production costs 149 Production costs 149 Production by Lurgi combined reforming-based Process 151 Syngas production by combined reforming for methanol 151 Process discurptionMethanol production by Lurgi two-stage process 152 Section 100—Syngas generation 152 Section 200—Methanol production 159<		Fixed capital costs	120
6 Methanol production by Casale Combined Reforming-Based Process 127 Process description-Methanol production by Casale combined reforming 128 Section 100—Syngas generation 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Cost estimates 140 Production costs 140 Design conditions 147 Cost bases 147 Cost bases 147 Project construction timing 149 Available utilities 149 Production costs 149 Effect of operating level on production costs 150 7 Methanol production by combined reforming-based Process 151 Syngas generation 152 Section 100—Syngas generation 152 Section 200—Methanol production by Lurgi two-stage process 152 Section 200—Methanol production 153 Steam methane reforme		Production costs	120
Process description—Methanol production by Casale combined reforming 128 Section 100—Syngas generation 120 Section 200—Methanol production 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Waste heat recovery 136 Plant startup boller/s 136 Materials of construction 137 Cost estimates 140 Production costs 140 Production costs 140 Design conditions 147 Copied construction timing 147 Project construction timing 149 Available utilities 149 Production costs 151 Syngas production by Lurgi combined reforming-based Process 151 Syngas production by combined reforming for methanol 151 Process discussion 152 Section 100—Syngas generation 152 Section 200—Methanol production by Lurgi two-stage process 152 Section 200—Methanol production 153 Process discussion 159 Feedstock 159	6	Methanol production by Casale Combined Reforming-Based Process	127
Section 100—Syngas generation 128 Section 200—Methanol production 130 Process discussion 135 Feedstock 135 Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Cost estimates 140 Production costs 140 Production costs 147 Capital investment 147 Cost bases 147 Capital investment 149 Available utilities 149 Production costs 149 Effect of operating level on production costs 150 7 Methanol production by Lurgi combined reforming-based Process 151 Syngas production by combined reforming for methanol 151 Process discussion 152 Section 100—Syngas generation 152 Section 100—Syngas generation 153 Process discussion 159 Feedstock 159 Natural gas-steam blending 159 <td></td> <td>Process description—Methanol production by Casale combined reforming</td> <td>128</td>		Process description—Methanol production by Casale combined reforming	128
Section 200—Methanol production130Process discussion135Feedstock135Natural gas-steam blending136Steam methane reformer136Waste heat recovery136Plant startup boiler/s136Materials of construction137Cost estimates140Fixed-capital costs140Production costs140Design conditions147Cogital investment147Capital investment147Project construction timing149Available utilities149Production costs1507Methanol production costs7Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164 <td< td=""><td></td><td>Section 100—Syngas generation</td><td>128</td></td<>		Section 100—Syngas generation	128
Process discussion135Feedstock135Natural gas-steam blending136Steam methane reformer136Waste heat recovery136Plant startup boiler/s136Materials of construction137Cost estimates140Fixed-capital costs140Production costs140Design conditions147Cost bases147Cost bases147Cost bases149Production costs149Production costs149Effect of operating level on production costs151Syngas production by combined reforming-based Process151Syngas production by combined reforming for methanol151Process discussion152Section 100—Syngas generation152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164 <td></td> <td>Section 200—Methanol production</td> <td>130</td>		Section 200—Methanol production	130
Feedstock135Natural gas-steam blending136Steam methane reformer136Waste heat recovery136Plant startup boiler/s136Materials of construction137Cost estimates140Fixed-capital costs140Production costs140Design conditions147Cost bases147Cost bases147Cost project construction timing149Available utilities149Production costs149Production costs149Syngas production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs164 <t< td=""><td></td><td>Process discussion</td><td>135</td></t<>		Process discussion	135
Natural gas-steam blending 136 Steam methane reformer 136 Waste heat recovery 136 Plant startup boiler/s 136 Materials of construction 137 Cost estimates 140 Fixed-capital costs 140 Production costs 140 Design conditions 147 Cost bases 147 Cost construction timing 149 Available utilities 149 Production costs 149 Production costs 149 Production costs 149 Effect of operating level on production costs 150 7 Methanol production by Lurgi combined reforming-based Process 151 Syngas production by combined reforming for methanol 151 Process description—Methanol production by Lurgi two-stage process 152 Section 100—Syngas generation 153 Process discussion 159 Feedstock 159 Natural gas-steam blending 159 Steam methane reformer 159 Waste heat recovery 160 Plant Starup Boiler/		Feedstock	135
Steam methane reformer 136 Waste heat recovery 136 Plant startup boller/s 136 Materials of construction 137 Cost estimates 140 Fixed-capital costs 140 Production costs 140 Design conditions 147 Cost bases 147 Cost bases 147 Cost construction timing 149 Available utilities 149 Production costs 149 Effect of operating level on production costs 151 Syngas production by Lurgi combined reforming-based Process 151 Process description—Methanol production by Lurgi two-stage process 152 Section 100—Syngas generation 152 Section 200—Methanol production 153 Process discussion 159 Feedstock 159 Natural gas-steam blending 159 Steam methane reformer 159 Waste heat recovery 160 Materials of construction 160 Cost estimates 164 Fixed-capital costs 164		Natural gas-steam blending	136
Waste heat recovery136Plant startup boiler/s136Materials of construction137Cost estimates140Fixed-capital costs140Production costs140Design conditions147Cost bases147Cost bases147Cost bases147Cost construction timing149Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process165		Steam methane reformer	136
Plant startup boller/s 136 Materials of construction 137 Cost estimates 140 Fixed-capital costs 140 Production costs 140 Design conditions 147 Cost bases 147 Cost bases 147 Cost bases 147 Capital investment 147 Project construction timing 149 Available utilities 149 Production costs 149 Effect of operating level on production costs 150 7 Methanol production by Lurgi combined reforming-based Process 151 Syngas production by combined reforming for methanol 151 Process description—Methanol production by Lurgi two-stage process 152 Section 100—Syngas generation 153 Process discussion 159 Feedstock 159 Natural gas-steam blending 159 Steam methane reformer 159 Waste heat recovery 160 Plant Startup Boiler/s 160 Materials of construction 160 Cost estimates 1		Waste heat recovery	136
Materials of construction137Cost estimates140Fixed-capital costs140Production costs147Cost bases147Cost bases147Capital investment147Project construction timing149Available utilities149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production152Section 100—Syngas generation152Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Plant startup boiler/s	136
Cost estimates140Fixed-capital costs140Production costs147Cost bases147Cost bases147Capital investment147Project construction timing149Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Materials of construction	137
Production costs140Production costs147Cost bases147Capital investment147Project construction timing149Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Fixed capital costs	140
Instruction roots147Design conditions147Cost bases147Capital investment147Project construction timing149Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Production costs	140
Doogn construction117Cost bases147Capital investment149Project construction timing149Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Design conditions	147
Capital investment147Project construction timing149Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Cost bases	147
Project construction timing149Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction164Fixed-capital costs164Fixed-capital costs164Fixed-capital costs164Forduction costs164Fixed-capital costs164		Capital investment	147
Available utilities149Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Cost estimates164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Project construction timing	149
Production costs149Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Available utilities	149
Effect of operating level on production costs1507Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction164Fixed-capital costs164Fixed-capital costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Production costs	149
7Methanol production by Lurgi combined reforming-based Process151Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction164Fixed-capital costs164Production costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Effect of operating level on production costs	150
Syngas production by combined reforming for methanol151Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Cost estimates164Fixed-capital costs164Production costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171	7	Methanol production by Lurgi combined reforming-based Process	151
Process description—Methanol production by Lurgi two-stage process152Section 100—Syngas generation153Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction164Fixed-capital costs164Production costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Syngas production by combined reforming for methanol	151
Section 100—Syngas generation152Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Production costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Process description—Methanol production by Lurgi two-stage process	152
Section 200—Methanol production153Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Production costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Section 100—Syngas generation	152
Process discussion159Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Production costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Section 200—Methanol production	153
Feedstock159Natural gas-steam blending159Steam methane reformer159Waste heat recovery160Plant Startup Boiler/s160Materials of construction160Cost estimates164Fixed-capital costs164Production costs1658Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process171		Process discussion	159
Natural gas-steam blending 159 Steam methane reformer 159 Waste heat recovery 160 Plant Startup Boiler/s 160 Materials of construction 160 Cost estimates 164 Fixed-capital costs 164 Production costs 165 8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Feedstock	159
Steam methane reformer 159 Waste heat recovery 160 Plant Startup Boiler/s 160 Materials of construction 160 Cost estimates 164 Fixed-capital costs 164 Production costs 165 8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Natural gas-steam blending	159
Plant Startup Boiler/s 160 Materials of construction 160 Cost estimates 164 Fixed-capital costs 164 Production costs 165 8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Steam methane reformer	109
Materials of construction 160 Cost estimates 164 Fixed-capital costs 164 Production costs 165 8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Maste field Tecovery Diant Startup Pailar/a	160
Cost estimates 164 Fixed-capital costs 164 Production costs 165 8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Materials of construction	160
Fixed-capital costs 164 Production costs 165 8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Cost estimates	16/
Production costs 165 8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Fixed-capital costs	164
8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process 171		Production costs	165
	8	Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process	171

Scope of Process Economics	171
Process Overview	172
Process Description	
Syngas Production – Section 100	172
Methanol Production – Section 200	177
Process Discussion	178
Feedstock	178
Unreacted Syngas Recycling	179
Methanol Converters Sizing Estimate	179
Converters Feed/Product Streams Configuration & Material Balance	179
Methanol Product Purification	179
Steam Consumption	180
Plant Startup Boiler/s	180
Materials of Construction	180
Miscellaneous Plant Sections	180
Cost Estimates	190
Fixed-Capital Costs	190
Production Costs	190

Tables

Table 2.1 Major producers of methanol Table 2.2 Specifications for federal AA grade methanol Table 2.3 Methanol licensor syngas generation position Table 2.4 Methanol licensor converter position	14 16 17 17
Table 2.3 Production costs Table 3.1 World top shareholders of methanol production units—2019 Table 4.1 Major methanol derived chemicals Table 4.2 Major producers of methanol	32 34 34
Table 4.3 Methanol purity associated with the main industrial grades Table 4.4 Specifications for federal AA grade methanol	35 35
Table 4.5 Lurgi estimate of syngas generation technology performance Table 4.6 Elementary steps in a kinetic model of methanol synthesis	49 52
Table 4.7 Acceptable contaminant concentrations in reagent grade methanol (% wt) Table 4.8 Specification of federal grade AA methanol Table 4.9 Status of Haldor-Topsoe mega methanol technology	54 54 65
Table 4.10 Comparison of combined reforming versus autothermal reforming Table 4.11 Methanol licensor catalyst supplier position Table 4.12 Methanol licensor syngas generation position	70 99 100
Table 4.13 Methanol licensor convertor position Table 5.1 Methanol production by Haldor Topsoe autothermal reforming-based process	100
Table 5.2 Methanol production by Haldor Topsoe autothermal reforming-based process main stream flows	107 112 112
Table 5.3 Methanol production by Haldor Topsoe autothermal reforming-based process major equipment	116
Table 5.4 Methanol production by Haldor Topsoe autothermal reforming-based process utilities summary Table 5.5 Methanol production by Haldor Topsoe autothermal reforming-based process	119 119
total fixed capital Table 5.6 Methanol production by Haldor Topsoe autothermal reforming-based process capital	122
Table 5.7 Methanol production by Haldor Topsoe autothermal reforming-based process production costs	123
Table 6.1 Methanol production by Casale combined reforming-based process design bases and assumptions	132
Table 6.2 Methanol production by Casale combined reforming-based process stream flowsTable 6.3 Methanol production by Casale combined reforming-based process major equipmentTable 6.4 Methanol production by Casale combined reforming-based process utility summaryTable 6.5 Methanol production by Casale combined reforming-based process total	133 137 139
capital investment Table 6.6 Methanol production by Casale combined reforming-based process total capital investment by section	142
Table 6.7 Methanol production by Casale combined reforming-based process production costs Table 7.1 Methanol production by Lurgi combined reforming-based process design bases and	144
assumptions Table 7.2 Methanol production by Lurgi combined reforming-based process stream flows Table 7.3 Methanol production by Lurgi combined reforming-based process major equipment Table 7.4 Methanol production by Lurgi combined reforming-based process utility summary Table 7.5 Methanol production by Lurgi combined reforming-based process total	155 156 161 163
capital investment Table 7.6 Methanol production by Lurgi combined reforming-based process total capital	166
Table 7.7 Methanol production by Lurgi combined reforming-based process production costs Table 8.1 Methanol production by Johnson Matthey/Davy two-stage reforming-based process	168
design bases and assumptions	175

Table 8.2 Methanol production by Johnson Matthey/Davy two-stage reforming-based process main	181
Table 8.3 Methanol production by Johnson Matthey/Davy two-stage reforming-based process	101
major equipment	186
Table 8.4 Methanol production by Johnson Matthey/Davy two-stage reforming-based process utility summary	188
Table 8.5 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process total capital investment	192
Table 8.6 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process total capital investment by section	193
Table 8.7 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process	10/
 Table 8.4 Methanol production by Johnson Matthey/Davy two-stage reforming-based process utility summary Table 8.5 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process total capital investment Table 8.6 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process total capital investment by section Table 8.7 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process total process total capital investment by section 	188 192 193

Figures

Figure 2.2 Global methanol capacity by region 12 Figure 2.3 Global methanol nameplate capacity changes by region 13 Figure 2.4 Methanol production by Haldor Topsoe autothermal reforming process 19 Figure 2.5 Methanol production by Lurgi combined reforming-based process 20 Figure 2.4 Methanol production by Lurgi combined reforming-based process 20 Figure 2.4 Methanol production by Johnson Matthey/Davy two-Stage reforming process 24 Figure 2.1 Methanol production by Johnson Matthey/Davy two-Stage reforming process 24 Figure 2.1 Dattery limits investment cost comparison 26 Figure 3.1 Global methanol dameplate vs. effective capacity 29 Figure 3.1 World production of methanol by region 31 Figure 3.2 World production of methanol by region 31 Figure 4.1 Methanol process 30 Figure 4.2 Basic types of SMR reformer 38 Figure 4.2 Assic methanol process flow schematic 41 Figure 4.2 Seaic methanol production process 43 Figure 4.2 Solasi methanol production process 43 Figure 4.1 Muthanol process flow schematic 41 Figure 4.2 Solasi methanol production process 43 Figure	Figure 1.1 Methanol process Figure 2.1 Global methanol production by region	10 12
Figure 2.4 Methanol process by Haldor Topsoe autothermal reforming process 19 Figure 2.5 Methanol production by Largi combined reforming-based process 20 Figure 2.7 Methanol production by Lurgi combined reforming-based process 22 Figure 2.8 Methanol production by Lurgi combined reforming-based process 22 Figure 2.9 Fixed capital investment cost comparison 25 Figure 2.10 Battery limits investment cost comparison 26 Figure 2.10 Battery limits investment cost comparison 27 Figure 3.1 Global methanol champlate vs. effective capacity 29 Figure 3.2 World methanol production by Jehostock 30 Figure 3.1 World production by the destock 30 Figure 3.1 World repotencies of the state of th	Figure 2.2 Global methanol capacity by region Figure 2.3 Global methanol nameplate capacity changes by region	12 13
Figure 2.5 Methanol production by Haldor Topsoe autothermal reforming-based process 19 Figure 2.7 Methanol production by Largi combined reforming-based process 20 Figure 2.7 Methanol production by Lonson Matthey/Davy two-Stage reforming process 24 Figure 2.7 Methanol production by Lungi combined reforming-based process 22 Figure 2.10 Battery limits investment cost comparison 26 Figure 2.11 Production costs comparison 27 Figure 3.1 Global methanol nameplate vs. effective capacity 29 Figure 3.2 World methanol production by feedstock 30 Figure 3.4 World production of wethanol by region 31 Figure 3.4 World capacity for methanol by shareholder—2019 32 Figure 4.3 Steam methane reforming process flow schematic 40 Figure 4.3 Steam methane reformer fromer 86 Figure 4.4 Sasic (With and concers) cas a function of temperature, pressure & S/C ratio 43 Figure 4.1 Methanol production process 44 Figure 4.1 Autohanol synthesis reactor schematic 47 Figure 4.1 Supproces schematic drawing 46 Figure 4.1 Autohanol synthesis reactor schematic 47 Figure 4.1 Jupolay is gas-heated reformer 57 <t< td=""><td>Figure 2.4 Methanol process</td><td>15</td></t<>	Figure 2.4 Methanol process	15
Figure 2.6 Methanol production by Casale combined reforming-based process 20 Figure 2.7 Methanol production by Johnson Matthey/Davy wwo-Stage reforming process 22 Figure 2.8 Methanol production by Johnson Matthey/Davy wwo-Stage reforming process 24 Figure 2.9 Fixed capital investment cost comparison 26 Figure 3.10 Battery limits investment cost comparison 27 Figure 3.10 Mothal methanol demand by end use 30 Figure 3.2 World methanol production by feedstock 30 Figure 3.2 World methanol process 35 Figure 3.2 World production of methanol by region 31 Figure 4.2 Basic types of SMR reformer 38 Figure 4.2 Basic types of SMR reformer 38 Figure 4.2 Basic methanol production process flow schematic 40 Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio 43 Figure 4.10 Autothermal (ATR) reformer schematic drawing 45 Figure 4.11 Mypical methanol synthesis reactor schematic 47 Figure 4.12 M/Davy's gas-heated reformer 57 Figure 4.13 JM/Davy's sadvanced gas-heated reformer 57 Figure 4.14 Lurg's first stage steam producing methanol converter 59 <t< td=""><td>Figure 2.5 Methanol production by Haldor Topsoe autothermal reforming process</td><td>19</td></t<>	Figure 2.5 Methanol production by Haldor Topsoe autothermal reforming process	19
Figure 2.7 Methanol production by Lurgi combined reforming-based process22Figure 2.8 Methanol production by Johnson Matthey/Davy wwo-Stage reforming process24Figure 2.10 Battery limits investment cost comparison25Figure 2.11 Production costs comparison27Figure 3.1 Global methanol nameplate vs. effective capacity29Figure 3.1 World methanol production by feedstock30Figure 3.1 World methanol production by feedstock30Figure 3.2 World capacity for methanol by shareholder—201932Figure 4.3 World production of methanol by shareholder—201932Figure 4.2 Basic types of SMR reformer38Figure 4.2 Steam methane reforming process flow schematic40Figure 4.3 Supparison as function of temperature, pressure & S/C ratio43Figure 4.4 Syngas clean-up process flow schematic40Figure 4.5 Equilibrium methane reforming process schematic47Figure 4.5 Dex Reactor schematic drawing46Figure 4.10 Autohermal (ATR) reformer schematic drawing46Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 M/Davy's davanced gas-heated reformer57Figure 4.18 Foster wheeler combustion air preheat economizer60Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio67Figure 4.19 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.19 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.19 Haldor-Topsoe side	Figure 2.6 Methanol production by Casale combined reforming-based process	20
Figure 2.8 Methanol production by Johnson Matthey/Davy wwo-Stage reforming process24Figure 2.9 Insed captal investment cost comparison25Figure 2.10 Battery limits investment cost comparison27Figure 3.2 Iobal methanol nameplate vs. effective capacity29Figure 3.3 World methanol amerplate vs. effective capacity29Figure 3.4 World production of methanol by region31Figure 3.4 World production of methanol by stareholder—201932Figure 4.4 Methanol process36Figure 4.4 Methanol process36Figure 4.4 Methanol process40Figure 4.4 Syngas clean-up process flow schematic41Figure 4.4 Sasic methanol production or cores43Figure 4.4 Songas clean-up process flow schematic41Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.6 Sacic methanol production process43Figure 4.7 Steam methane reforming process schematic47Figure 4.10 Autothermal (ATR) reformer schematic drawing45Figure 4.11 Typical methanol synthesis reactor schematic47Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 M/Davy's advanced gas-heated reformer57Figure 4.14 Ferperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.20 Haldor-Topsoe side fired steam methane reforming process62Figure 4.21 H-T Combined reforming process schematic47Figure 4.22 H-T Pure autothermal reforming62Figure 4.24 H-T Heaterschange reformer57<	Figure 2.7 Methanol production by Lurgi combined reforming-based process	22
Figure 2.9 Fixed capital investment cost comparison26Figure 2.10 Battery limits investment cost comparison26Figure 2.11 Production costs comparison27Figure 3.1 Global methanol nameplate vs. effective capacity29Figure 3.3 World methanol production by feedstock30Figure 3.4 World production of methanol by region31Figure 3.5 World capacity for methanol by shareholder—201932Figure 4.1 Methanol process35Figure 4.3 Steam methane reforming process flow schematic40Figure 4.4 Syngas clean-up process flow schematic40Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.6 Basic methanol production process43Figure 4.7 Steam methane reformer schematic drawing46Figure 4.9 Combined reforming process schematic47Figure 4.1 Muthanol synthesis reactor schematic47Figure 4.1 Ju/Davy's advanced gas-heated reformer57Figure 4.1 MuDavy's advanced gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.14 Lurgi's first stage steam producing methanol converter60Figure 4.15 Temperature profile of Lurgi's first stage scooled methanol converter69Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reformer61Figure 4.21 H-T Combined reformer62Figure 4.21 H-T Combined reforming process schematic68Figure 4.21 H-T Combined reforming process schematic68Fi	Figure 2.8 Methanol production by Johnson Matthey/Davy wwo-Stage reforming process	24
Figure 2.10 Battery limits investment cost comparison26Figure 2.11 Production costs comparison27Figure 3.1 Global methanol nameplate vs. effective capacity29Figure 3.2 2023 world methanol by meduse30Figure 3.4 World production of methanol by region31Figure 3.4 World production of methanol by shareholder—201932Figure 4.1 Methanol process35Figure 4.2 Basic types of SMR reformer40Figure 4.4 Syngas clean-up process flow schematic41Figure 4.4 Syngas clean-up process flow schematic41Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.4 Sugas clean-up process flow schematic41Figure 4.5 Combined reforming process schematic47Figure 4.7 Steam methane reformer schematic drawing45Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic47Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer59Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter60Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.21 H-T Combined reforming process schematic69Figure 4.22 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.23	Figure 2.9 Fixed capital investment cost comparison	25
Figure 2.11 Production costs comparison27Figure 3.12 (blockal methanol nameplate vs. effective capacity29Figure 3.2 2023 world methanol demand by end use30Figure 3.3 World methanol production by feedstock30Figure 3.4 World production of methanol by region31Figure 3.4 World production of methanol by shareholder—201932Figure 4.1 Methanol process35Figure 4.2 Basic types of SMR reformer38Figure 4.3 Steam methane reforming process flow schematic40Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio33Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio34Figure 4.6 Basic methanol production process43Figure 4.7 Steam methane reformer schematic drawing45Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic47Figure 4.12 JM/Davy's advanced gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer59Figure 4.14 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.18 Foster wheeler combustion air preheat economizer60Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.21 H-T Combined reformer69Figure 4.22 H-T Dure autothermal reformer61Figure 4.23 H-T Autothermal reformer62Figure 4.24	Figure 2.10 Battery limits investment cost comparison	26
Figure 3.1 Global methanol nameplate vs. effective capacity29Figure 3.2 023 world methanol by methanol by region30Figure 3.3 World production of methanol by region31Figure 3.4 World production of methanol by shareholder—201932Figure 4.1 Methanol process35Figure 4.2 Basic types of SMR reformer38Figure 4.3 Steam methane reforming process flow schematic40Figure 4.4 Syngas clean-up process flow schematic41Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.6 Basic methanol process46Figure 4.7 Steam methane reformer schematic drawing46Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer59Figure 4.14 Lorgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's first stage steam producing methanol converter60Figure 4.17 Generic autothermal reformer61Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing62Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reformer69Figure 4.23 H-T Autothermal reformer69Figure 4.14 Dombined reforming process68Figure 4.24 H-T Teut autothermal reformer69<	Figure 2.11 Production costs comparison	27
Figure 3.2 2023 world methanol demand by end use 30 Figure 3.2 World production of methanol by region 31 Figure 3.4 World production of methanol by shareholder—2019 32 Figure 4.1 Methanol production by feedstock 30 Figure 4.2 Basic types of SMR reformer 38 Figure 4.3 Steam methane reforming process flow schematic 40 Figure 4.4 Syngas clean-up process flow schematic 41 Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio 43 Figure 4.5 Steam methane reformer schematic drawing 45 Figure 4.7 Steam methane reformer schematic drawing 46 Figure 4.1 A Uutothermal (ATR) reformer schematic 47 Figure 4.1 A Uutothermal (ATR) reformer schematic 49 Figure 4.1 Juf/Davy's gas-heated reformer 57 Figure 4.1 Juf/Davy's davanced gas-heated reformer 59 Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter 59 Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio 66 Figure 4.19 Haldor-Topsoe side fired steam methane reformer drawing 67 Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing 69 Figure 4.21	Figure 3.1 Global methanol nameplate vs. effective capacity	29
Figure 3.3 World methanol production by teleostock 30 Figure 3.4 World production of methanol by shareholder—2019 31 Figure 4.1 Methanol process 35 Figure 4.2 Basic types of SMR reformer 38 Figure 4.2 Basic types of SMR reformer 41 Figure 4.5 Steam methane reforming process flow schematic 41 Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio 43 Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio 45 Figure 4.6 Basic methanol production process 43 Figure 4.7 Steam methane reformer schematic drawing 46 Figure 4.9 Combined reforming process schematic 47 Figure 4.11 Typical methanol synthesis reactor schematic 47 Figure 4.12 JM/Davy's gas-heated reformer 57 Figure 4.13 JM/Davy's advanced gas-heated reformer 57 Figure 4.14 Lurgi's first stage steam producing methanol converter 59 Figure 4.14 Expression autothermal reformer 60 Figure 4.15 Temperature profile of Lurgi's second stage gas cooled methanol converter 59 Figure 4.14 Lurgi's first stage steam methane reformer drawing 67 Figure 4.20 Haldor-Topsoe side fired steam methane reformer dra	Figure 3.2 2023 world methanol demand by end use	30
Figure 3.4 World apacity for methanol by shareholder—2019 31 Figure 4.1 Methanol process 35 Figure 4.2 Basic types of SMR reformer 38 Figure 4.3 Steam methane reforming process flow schematic 40 Figure 4.4 Syngas clean-up process flow schematic 41 Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio 43 Figure 4.5 Equilibrium methane reformer schematic drawing 45 Figure 4.7 Steam methane reformer schematic drawing 45 Figure 4.2 Oxmbined reforming process schematic 47 Figure 4.1 Typical methanol synthesis reactor schematic 47 Figure 4.1 JM/Davy's gas-heated reformer 57 Figure 4.1 JM/Davy's gas-heated reformer 57 Figure 4.13 JM/Davy's advanced gas-heated reformer 57 Figure 4.16 Temperature profile of Lurgi's first stage steam producing methanol converter 59 Figure 4.18 Foster wheeler combustion air preheat economizer 62 Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio 67 Figure 4.21 H-T Combined reforming process schematic 68 Figure 4.22 H-T Pure autothermal reforming forcess schematic 68 Figure 4.24 H-T Heat exchange reformer	Figure 3.3 World methanol production by feedstock	30
Figure 4.1 Wethanol process 32 Figure 4.2 Basic types of SMR reformer 38 Figure 4.3 Steam methane reforming process flow schematic 40 Figure 4.4 Syngas clean-up process flow schematic 41 Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio 43 Figure 4.6 Basic methanol production process 43 Figure 4.7 Steam methane reformer schematic drawing 45 Figure 4.1 POX Reactor schematic drawing 46 Figure 4.1 Doubled reforming process schematic 47 Figure 4.11 Typical methanol synthesis reactor schematic 49 Figure 4.12 JM/Davy's gas-heated reformer 57 Figure 4.11 Typical methanol synthesis reactor schematic 49 Figure 4.12 JM/Davy's gas-heated reformer 57 Figure 4.13 JM/Davy's advanced gas-heated reformer 59 Figure 4.14 Lurgi's first stage steam producing methanol converter 59 Figure 4.17 Generic autothermal reformer 60 Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio 66 Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing 67 Figure 4.21 H-T Combined reforming process schematic 68	Figure 3.4 World production of methanol by region	31
Instruction Process33Figure 4.2 Basic types of SMR reformer38Figure 4.3 Steam methane reforming process flow schematic40Figure 4.4 Syngas clean-up process flow schematic41Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.6 Basic methanol production process43Figure 4.7 Steam methane reformer schematic drawing46Figure 4.8 POX Reactor schematic drawing46Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter59Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.18 Foster wheeler combustion air preheat economizer61Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reformer69Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol purification distillation train73Figure 4.26 Hardor-Topsoe methanol purification distillation train73Figure 4.27 Map of JM/Davy low pressure m	Figure 3.5 Wond capacity for methanol by shareholder—2019	32
Figure 4.3 Steam methane reforming process flow schematic40Figure 4.4 Syngas clean-up process flow schematic41Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.5 Basic methanol production process43Figure 4.7 Steam methane reformer schematic drawing45Figure 4.8 POX Reactor schematic drawing46Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.10 Autothermal (ATR) reformer schematic49Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.13 Im/Davy's advanced gas-heated reformer57Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.18 Foster wheeler combustion air preheat economizer60Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.21 H-T Combined reforming process schematic69Figure 4.22 H-T Dure autothermal reformer69Figure 4.25 H-T Dure autothermal reformer69Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.25 Haldor-Topsoe methanol purification distillation train73Figure 4.32 JM/Davy gas heated reactor76Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.26 H-T 3-colum	Figure 4.2 Basic types of SMR reformer	38
Figure 4.4 Syngas clean-up process flow schematic41Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio43Figure 4.6 Basic methanol production process43Figure 4.7 Steam methane reformer schematic drawing45Figure 4.8 POX Reactor schematic drawing46Figure 4.9 Combined reforming process schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's first stage steam producing methanol converter60Figure 4.17 Generic autothermal reformer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reforming Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.23 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.33 JM/Davy sayas reactors in series configuration78Figure 4.33 JM/Davy supas reactors in series configuration78Figure 4.33 JM/Davy	Figure 4.3 Steam methane reforming process flow schematic	40
Figure 1.45 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio Figure 4.6 Basic methanol production process Figure 4.7 Steam methane reformer schematic drawing Figure 4.8 POX Reactor schematic drawing Figure 4.9 Combined reforming process schematic Figure 4.9 Combined reforming process schematic Figure 4.10 Autothermal (ATR) reformer schematic Figure 4.10 Autothermal (ATR) reformer schematic Figure 4.12 JM/Davy's gas-heated reformer Figure 4.13 JM/Davy's advanced gas-heated reformer Figure 4.13 JM/Davy's advanced gas-heated reformer Figure 4.14 Lurgi's first stage steam producing methanol converter Figure 4.15 Temperature pofile of Lurgi's first stage steam producing methanol converter Figure 4.16 Temperature pofile of Lurgi's second stage gas cooled methanol converter Figure 4.17 Generic autothermal reformer Figure 4.18 Foster wheeler combustion air preheat economizer Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing Figure 4.21 H-T Combined reforming process schematic Figure 4.22 H-T Pure autothermal reformer Figure 4.23 H-T Autothermal reformer Figure 4.24 H-T Heat exchange reformer configuration Figure 4.25 Haldor-Topsoe endentanol plants Figure 4.26 H-T 3-column methanol purification distillation train Figure 4.28 Schematic of JM/Davy low pressure methanol plants Figure 4.29 Mi/Davy Middle East 3000 tpd methanol plant design using SMR only Figure 4.29 JM/Davy advanced gas heated reformer Figure 4.31 JM/Davy advanced gas heated reformer Figure 4.32 JM/Davy syngas reactors in parallel configuration Figure 4.34 JM/Davy syngas reactors in parallel configurat	Figure 4.4 Syngas clean-up process flow schematic	41
Figure 4.6 Basic methanol production process43Figure 4.7 Steam methane reformer schematic drawing45Figure 4.8 POX Reactor schematic drawing46Figure 4.9 Combined reforming process schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic47Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.16 Generic autothermal reformer60Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T as-column methanol purification distillation train73Figure 4.28 Schematic of JM/Davy licensed methanol plant73Figure 4.31 JM/Davy sugas reactors in series configuration76Figure 4.32 JM/Davy sugas reactors in series configuration78Figure 4.23 Lalodav dvanced gas heated reformer76Figure 4.24 H-T Heat exchange reformer76Figure 4.25 Haldor-Topsoe methano	Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio	43
Figure 4.7 Steam methane reformer schematic drawing45Figure 4.8 POX Reactor schematic drawing46Figure 4.9 Combined reforming process schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer59Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reformer69Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol plants73Figure 4.26 H-T 3-column methanol plants73Figure 4.29 JM/Davy licensed methanol plant73Figure 4.30 JM/Davy advanced gas heated reformer76Figure 4.31 JM/Davy syngas reactors in series configuration74Figure 4.32 JM/Davy syngas reactors in series configuration76Figure 4.33 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy syngas reactors in parallel conf	Figure 4.6 Basic methanol production process	43
Figure 4.8 POX Reactor schematic drawing46Figure 4.9 Combined reforming process schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's first stage steam producing methanol converter60Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter61Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol plants73Figure 4.29 JM/Davy licensed methanol plant design using SMR only75Figure 4.31 JM/Davy gas neactors in series configuration77Figure 4.31 JM/Davy syngas reactors in series configuration78Figure 4.31 H-TAutothermal reformer76Figure 4.29 JM/Davy singes reactors in series configuration78Figure 4.32 JM/Davy syngas reactors in series configuration<	Figure 4.7 Steam methane reformer schematic drawing	45
Figure 4.9 Combined reforming process schematic47Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter60Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reforming69Figure 4.23 H-T Autothermal reformer71Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Cholumn methanol converter technology72Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy subas cactors in series configuration78Figure 4.32 JM/Davy syngas reactors in parallel configuration79Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy stube cooled methanol converter70Figure 4.34 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter<	Figure 4.8 POX Reactor schematic drawing	46
Figure 4.10 Autothermal (ATR) reformer schematic47Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's first stage steam producing methanol converter60Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.20 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.21 H-T Combined reforming process schematic68Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol purification distillation train73Figure 4.28 Schematic of JM/Davy low pressure methanol plant design using SMR only75Figure 4.29 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy bloc coled methanol converter80Figure 4.34 JM/Davy stype coled methanol converter70Figure 4.34 JM/Davy stype coled methanol converter70Figure 4.34 JM/Davy stype coled methanol converter76Figure 4.34 JM/Davy stype cole	Figure 4.9 Combined reforming process schematic	47
Figure 4.11 Typical methanol synthesis reactor schematic49Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's davanced gas-heated reformer57Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter60Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter61Figure 4.17 Generic autothermal reformer61Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.28 Schematic of JW/Davy low pressure methanol process74Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy syngas reactors in series configuration78Figure 4.32 JM/Davy syngas reactors in parallel configuration78Figure 4.33 JM/Davy stype cooled methanol converter70Figure 4.34 JM/Davy stype coo	Figure 4.10 Autothermal (ATR) reformer schematic	47
Figure 4.12 JM/Davy's gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.13 JM/Davy's advanced gas-heated reformer59Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.31 JM/Davy gas heated reformer76Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy syngas reactors in parallel configuration79 <td>Figure 4.11 Typical methanol synthesis reactor schematic</td> <td>49</td>	Figure 4.11 Typical methanol synthesis reactor schematic	49
Figure 4.13 JM/Davy's advanced gas-heated reformer57Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter50Figure 4.15 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter61Figure 4.17 Generic autothermal reformer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol purification distillation train73Figure 4.28 Schematic of JM/Davy licensed methanol plant73Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.12 JM/Davy's gas-heated reformer	57
Figure 4.14 Lurgi's first stage steam producing methanol converter59Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.29 JM/Davy licensed methanol plant design using SMR only75Figure 4.29 JM/Davy gas heated reactor76Figure 4.31 JM/Davy syngas reactors in series configuration78Figure 4.32 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter70Figure 4.34 JM/Davy tube cooled methanol converter70Figure 4.34 JM/Davy tube cooled methanol converter70Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Dav	Figure 4.13 JM/Davy's advanced gas-heated reformer	57
Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter59Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.29 JM/Davy licensed methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy syngas reactors in series configuration78Figure 4.32 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 Lindow from the converter80Figure 4.34 Lindow from the converter80Figure 4.34 Lindow from the converter70Figure 4.34 Lindow from the converter80Figure 4.34 Lindow from the converter80Figure 4.34 Lindow from the converter80Figure 4.34 Lindow from the conve	Figure 4.14 Lurgi's first stage steam producing methanol converter	59
Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter60Figure 4.17 Generic autothermal reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.29 JM/Davy licensed methanol plants73Figure 4.30 JM/Davy advanced gas heated reformer76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.34 JM/Davy tube cooled methanol converter78Figure 4.34 JM/Davy tube cooled methanol converter70Figure 4.32 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy tube cooled methanol converter70Figure 4.35 Linde insthemed expressions in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.15 Temperature profile of Lurgi's first stage steam producing methanol converter	59
Figure 4.17 Generic autoriteman reformer61Figure 4.18 Foster wheeler combustion air preheat economizer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reforming69Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.16 Temperature profile of Lurgi's second stage gas cooled methanol converter	60
Figure 4.16 Foster wheeler combustion an preneat economizer62Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio66Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reforming69Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.28 Schematic of JM/Davy licensed methanol plants73Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration78Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.17 Generic automental reformer	62
Figure 4.15 Haldor Hopsee of with methanic conversion as function of temperature and steam toFigure 4.20 Haldor-Topsoe side fired steam methane reformer drawing67Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reforming69Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.28 Schematic of JM/Davy licensed methanol plants73Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy advanced gas heated reformer77Figure 4.31 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.10 Foster wheeler combustion all preneat economizer Figure 4.19 Haldor-Tonsoe SMR methane conversion as function of temperature and steam to	02
Figure 4.20Haltor-Topsoe side fired steam methane reformer drawing67Figure 4.21H-T Combined reforming process schematic68Figure 4.22H-T Pure autothermal reforming69Figure 4.23H-T Autothermal reformer69Figure 4.24H-T Heat exchange reformer configuration71Figure 4.25Haldor-Topsoe methanol converter technology72Figure 4.26H-T 3-column methanol purification distillation train73Figure 4.28Schematic of JM/Davy licensed methanol plants73Figure 4.29JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30JM/Davy advanced gas heated reformer77Figure 4.31JM/Davy syngas reactors in series configuration78Figure 4.33JM/Davy syngas reactors in parallel configuration79Figure 4.34JM/Davy tube cooled methanol converter80	carbon ratio	66
Figure 4.21 H-T Combined reforming process schematic68Figure 4.22 H-T Pure autothermal reforming69Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.27 Map of JM/Davy licensed methanol plants73Figure 4.29 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy as heated reactor76Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.35 Linda induction and the process80	Figure 4 20 Haldor-Topsoe side fired steam methane reformer drawing	67
Figure 4.22 H-T Pure autothermal reforming69Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.27 Map of JM/Davy licensed methanol plants73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.21 H-T Combined reforming process schematic	68
Figure 4.23 H-T Autothermal reformer69Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.27 Map of JM/Davy licensed methanol plants73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.22 H-T Pure autothermal reforming	69
Figure 4.24 H-T Heat exchange reformer configuration71Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.27 Map of JM/Davy licensed methanol plants73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.23 H-T Autothermal reformer	69
Figure 4.25 Haldor-Topsoe methanol converter technology72Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.27 Map of JM/Davy licensed methanol plants73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy tube cooled methanol converter80Figure 4.34 JM/Davy tube cooled methanol converter80	Figure 4.24 H-T Heat exchange reformer configuration	71
Figure 4.26 H-T 3-column methanol purification distillation train73Figure 4.27 Map of JM/Davy licensed methanol plants73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.35 JM/Davy tube cooled methanol converter80	Figure 4.25 Haldor-Topsoe methanol converter technology	72
Figure 4.27 Map of JM/Davy licensed methanol plants73Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.35 JM/Davy tube cooled methanol converter80	Figure 4.26 H-T 3-column methanol purification distillation train	73
Figure 4.28 Schematic of JM/Davy low pressure methanol process74Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.35 JM/Davy tube cooled methanol converter80	Figure 4.27 Map of JM/Davy licensed methanol plants	73
Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only75Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.35 JM/Davy tube cooled methanol converter80	Figure 4.28 Schematic of JM/Davy low pressure methanol process	74
Figure 4.30 JM/Davy gas heated reactor76Figure 4.31 JM/Davy advanced gas heated reformer77Figure 4.32 JM/Davy syngas reactors in series configuration78Figure 4.33 JM/Davy syngas reactors in parallel configuration79Figure 4.34 JM/Davy tube cooled methanol converter80Figure 4.35 JM/Davy tube cooled methanol converter80	Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only	75
Figure 4.31 JM/Davy advanced gas neated reformer 77 Figure 4.32 JM/Davy syngas reactors in series configuration 78 Figure 4.33 JM/Davy syngas reactors in parallel configuration 79 Figure 4.34 JM/Davy tube cooled methanol converter 80 Figure 4.35 Linds insthemed methanol converter 80	Figure 4.30 JM/Davy gas heated reactor	76
Figure 4.32 JM/Davy syngas reactors in parallel configuration 76 Figure 4.33 JM/Davy syngas reactors in parallel configuration 79 Figure 4.34 JM/Davy tube cooled methanol converter 80 Figure 4.35 Linds isothermal methanol converter 80	Figure 4.31 JW/Davy advanced gas heated reformer	70
Figure 4.35 JM/Davy tube cooled methanol converter 80	Figure 4.32 JW/Davy syngas reactors in parallel configuration	70
Figure 4.25 Linds is the melling in the real method is converter 00	Figure 4.34. IM/Davy tube cooled methanol converter	19
Floure 4 55 - Linde Isomermal meinanol convener	Figure 4.35 Linde isothermal methanol converter	80
Figure 4.36 JM/Davy 2-column methanol distillation train 81	Figure 4.36 JM/Davy 2-column methanol distillation train	81
Figure 4.37 Syngas generation by combined-reforming 82	Figure 4.37 Syngas generation by combined-reforming	82

Figure 4.38 Casale synthesis loop	82
Figure 4.39 Casale axial-radial catalyst bed and axial-radial pre-reformer shell	83
Figure 4.40 Methanol Casale ARC methanol converter	84
Figure 4.41 Isothermal Methanol Converter (IMC) plates and axial-radial converter	85
Figure 4.42 Methanol Casale 3-column methanol distillation train	86
Figure 4.43 Lurgi combined reforming synthesis gas generation schematic	87
Figure 4.44 Lurgi autothermal reformer schematic	88
Figure 4.45 Lurgi MegaMethanol [®] synthesis loop	88
Figure 4.46 Lurgi 2-stage converter reactor system	89
Figure 4.47 Lurgi steam raising single converter system	90
Figure 4.48 Lurgi steam raising dual converter system	91
Figure 4.49 Lurgi 2-column methanol purification via distillation	92
Figure 4.50 Lurgi 3-column methanol purification via distillation	93
Figure 4.51 Toyo combined reforming option	95
Figure 4.52 Toyo MRF-Z methanol converter schematic	96
Figure 4.53 Toyo methanol converter details	97
Figure 5.1 Schematic diagram of an ATR	102
Figure 5.2 Effect of natural gas price on production cost & product value of methanol	126
Figure 6.2 Effect of natural gas price on production cost & product value of methanol	146
Figure 7.2 Effect of natural gas price on production cost and product value of methanol	170
Figure 8.2 Effect of natural gas price on production cost & product value of methanol	196

Appendix D Figures

Figure 5.1 (1 of 2) Methanol production by Haldor Topsoe autothermal reforming-based process	217
Figure 5.1 (2 of 2) Methanol production by Haldor Topsoe autothermal reforming-based process	218
Figure 6.1 (1 of 2) Methanol production by Casale combined reforming-based process	219
Figure 6.1 (2 of 2) Methanol production by Casale combined reforming-based process	220
Figure 7.1 (1 of 2) Methanol production by Lurgi combined reforming-based process	221
Figure 7.1 (2 of 2) Methanol production by Lurgi combined reforming-based process	222
Figure 8.1 (1 of 2) Methanol production by Johnson Matthey/Davy two-stage reforming-	
based process	223
Figure 8.1 (2 of 2) Methanol production by Johnson Matthey/Davy two-stage reforming-	
based process	224

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit News all IHS Markit logs and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any contents, estimates, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit™. All rights reserved and all intellectual property rights are retained by IHS Markit™. All rights reserved and all intellectual property rights are retained by IHS Markit.

