Methanol

PEP Report 43F

November 2019
Abstract

Methanol is a large-volume commodity chemical that belongs to the alcohol family of products. In 2018, its worldwide production was over 79 million metric tons. Globally, methanol production capacity more than doubled over the past decade. Northeast Asia accounted for more than three-quarters of the new capacity brought onstream during that period. Interestingly, China is the sole producing country in the Northeast Asian region.

Methanol is commercially a very important chemical as it is used not only in its native state of methanol in many industrial applications but also finds wide use as a raw material for a host of industrial chemicals as outlined in this report. Major sources of methanol production are natural gas and coal. Several types of methanol technologies have been developed by various licensors. Notable among those licensors are Lurgi, Johnson-Davy, Haldor Topsoe, Casale, and Mitsubishi Gas Chemicals. Besides these licensors, there are several other licensors that also license their own version of the methanol technologies. Included in those licensors are companies such as Uhde, Toyo, Jacobs, etc. Other companies like Foster Wheeler and Linde are also well known in the realm of methanol production as licensor for syngas reformer technologies.

In view of the increasing commercial importance of methanol, Process Economics Program (PEP) of IHS Markit decided early this year to carry out a detailed technoeconomic study of the major methanol manufacturing technologies based on the latest developments taking place in those technologies. This PEP report presents the results of that study.

As a brief prelude for the readers, four licensed technologies are examined and analyzed from a technoeconomic point of view.

• Haldor Topsoe Autothermal Reforming-based Methanol Production Technology
• Casale Combined Reforming-based Methanol Production Technology
• Lurgi Combined Reforming-based Methanol Production Technology
• Johnson Matthey/Davy Gas-Heated Reforming-based Methanol Production Technology

Each evaluation of the technology entails a series of steps involving a brief process review, followed by a presentation of more detailed parametric information about the technology such as key features of the technology, process operation key conditions, process description, material and energy balance, equipment sizes, utilities consumption, and finally a pictorial representation of the process in the form of process flow diagram. Process economics are presented toward the end of each chapter.

One of the key points of evaluation in this report is that the process waste heat recovery scheme is designed in a thermally balanced way so that there is no export or import of steam from the process.
The plant requires only electricity, (makeup) cooling water, and some process water from an external supply source. Oxygen is supplied from an integrated air separation plant.

Based on above scheme, capital cost and production cost estimates are presented for each process producing 5,000 metric tons/day of AA-grade methanol.

Also attached with the report is iPEP Navigator, which is an interactive costing tool that allows report readers to select and compare the processes economics in different regions of world.

These and other technologies—past, present, and emerging ones, for PO production are reviewed with a bibliography and abstracts for relevant patents since the 1950s. The industry status is updated, the modern PO processes are summarized in terms of comparative economics and the key process indicators (KPI) of capital intensity, energy intensity, carbon efficiency, and carbon intensity. Lastly, the iPEP Navigator PO tool is attached to the electronic version of this report. The iPEP Navigator interactive module provides an economic snapshot for each process, allowing the user to select and compare the processes, units, and regions of interest.
Contents

1 **Introduction** 10
 Process technology 10

2 **Summary** 12
 Commercial overview 12
 Methanol producing companies 13
 Natural gas-based methanol technologies licensors 15

 Industrial aspects 15
 Methanol properties 15

 Technical aspects 16
 Synthesis generation 16
 Methanol converter technology 17
 Haldor Topsoe autothermal reforming-based process 17
 Casale combined reforming-based process 19
 Lurgi combined reforming-based process 20
 Johnson Matthey/Davy two-stage reforming-based process 22

 Economic aspects 24
 Scope of process economics 24
 Capital cost comparison 25
 Production costs comparison 26

3 **Industry status** 29
 Producing companies 31

4 **Technology** 34
 Introduction 34
 Process technology 34
 Product properties 35
 Developing technologies 36
 Feedstock 36
 Natural gas 36
 Natural gas-based licensors 36
 Major natural-gas reforming technologies 37
 Steam methane reforming 37
 Types of steam reformers 37
 Feedstock pretreatment 40
 Prereforming 41
 Steam-carbon molar ratio 41
 Reforming temperature and pressure 42
 Methanol production process steps 43
 Steam methane reformer chemistry 44
 Steam methane reforming scheme 44
 Partial oxidation (POX) chemistry 45
 Combined reforming chemistry 46
 Autothermal reforming (ATR) chemistry 47
 Methanol synthesis reaction chemistry 49
 Methanol synthesis reaction kinetics 51
Water gas shift reaction 53
CO$_2$ dry reforming 53
Methane cracking 53
Product properties 54
Development status 55
Licensor design advances 55
JM/Davy advanced gas-heated reformer 55
Lurgi’s two-stage methanol synthesis converter 58
Oxygen-blown autothermal reformer technology 60
Air pre-heat steam methane reformer 62
Status of catalyst development 62
Reforming catalysts 62
Methanol synthesis catalysts 63
Typical methanol synthesis converter configurations 63
Process technology alternatives 64
Major commercial methanol licensor offerings 64
Haldor-Topsoe commercial technology 65
H-T Conventional steam methane reforming 65
H-T Conventional steam methane reformer 66
H-T Combined reforming process 67
H-T Pure autothermal reforming 68
H-T Heat exchange reforming technology 70
Haldor Topsoe methanol converter catalyst 71
Haldor-Topsoe methanol converter technology 71
Haldor-Topsoe methanol purification by distillation 72
JM/Davy low pressure methanol technology 73
Conventional JM/Davy low pressure methanol process 74
JM/Davy gas heated reforming 75
Series and Parallel Configuration of JM/Davy SMR and POX Reformers 78
Conventional JM/Davy Tube Cooled Methanol Converter 79
Linde isothermal converter 80
JM/Davy methanol purification distillation 81
Casale commercial technology 81
Casale syngas generation by combined reforming 81
Casale methanol synthesis 82
Casale Preforming reactor technology 83
Methanol Casale ARC and Radial Converter 84
Casale 3-column methanol distillation 85
Lurgi methanol process technology 86
Toyo Engineering methanol process 93
Toyo recent commercial methanol plant experience 93
Toyo MRF-Z methanol process 94
Toyo steam methane reforming 94
Toyo process overview 94
Toyo SMR catalyst technology 95
Toyo MRF-Z methanol reactor design 96
Toyo’s methanol synthesis catalyst 98
Reaction Conditions/Parameters 98
Toyo Engineering methanol process 99
Methanol process catalysts 99
Synthesis generation 99
Methanol converter technology 100

5 Methanol production by Haldor Topsoe Autothermal Reforming-based process 101
Process overview 101
6 Methanol production by Casale Combined Reforming-Based Process

Process description—Methanol production by Casale combined reforming

7 Methanol production by Lurgi combined reforming-based Process

Process description—Methanol production by Lurgi two-stage process

8 Methanol Production by Johnson Matthey/Davy Two-stage Reforming-based Process
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of Process Economics</td>
<td>171</td>
</tr>
<tr>
<td>Process Overview</td>
<td>172</td>
</tr>
<tr>
<td>Process Description</td>
<td>172</td>
</tr>
<tr>
<td>Syngas Production – Section 100</td>
<td>172</td>
</tr>
<tr>
<td>Methanol Production – Section 200</td>
<td>177</td>
</tr>
<tr>
<td>Process Discussion</td>
<td>178</td>
</tr>
<tr>
<td>Feedstock</td>
<td>178</td>
</tr>
<tr>
<td>Unreacted Syngas Recycling</td>
<td>179</td>
</tr>
<tr>
<td>Methanol Converters Sizing Estimate</td>
<td>179</td>
</tr>
<tr>
<td>Converters Feed/Product Streams Configuration & Material Balance</td>
<td>179</td>
</tr>
<tr>
<td>Methanol Product Purification</td>
<td>179</td>
</tr>
<tr>
<td>Steam Consumption</td>
<td>180</td>
</tr>
<tr>
<td>Plant Startup Boiler/s</td>
<td>180</td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>180</td>
</tr>
<tr>
<td>Miscellaneous Plant Sections</td>
<td>180</td>
</tr>
<tr>
<td>Cost Estimates</td>
<td>190</td>
</tr>
<tr>
<td>Fixed-Capital Costs</td>
<td>190</td>
</tr>
<tr>
<td>Production Costs</td>
<td>190</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Major producers of methanol</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Specifications for federal AA grade methanol</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Methanol licensor syngas generation position</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Methanol licensor converter position</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Production costs</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>World top shareholders of methanol production units—2019</td>
<td>32</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Major methanol derived chemicals</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Methanol purity associated with the main industrial grades</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Specifications for federal AA grade methanol</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Lurgi estimate of syngas generation technology performance</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Elementary steps in a kinetic model of methanol synthesis</td>
<td>52</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Acceptable contaminant concentrations in reagent grade methanol (% wt)</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Specification of federal grade AA methanol</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Status of Haldor Topsoe mega methanol technology</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Comparison of combined reforming versus autothermal reforming</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Methanol licensor catalyst supplier position</td>
<td>99</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Methanol licensor converter position</td>
<td>100</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Methanol licensor syngas generation position</td>
<td>100</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Methanol production by Haldor Topsoe autothermal reforming-based process design bases and assumptions</td>
<td>107</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Methanol production by Haldor Topsoe autothermal reforming-based process main stream flows</td>
<td>112</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Methanol production by Haldor Topsoe autothermal reforming-based process major equipment</td>
<td>112</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Methanol production by Haldor Topsoe autothermal reforming-based process utilities summary</td>
<td>116</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Methanol production by Haldor Topsoe autothermal reforming-based process total fixed capital</td>
<td>119</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Methanol production by Haldor Topsoe autothermal reforming-based process capital investment by section</td>
<td>122</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Methanol production by Haldor Topsoe autothermal reforming-based process production costs</td>
<td>123</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Methanol production by Casale combined reforming-based process design bases and assumptions</td>
<td>132</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Methanol production by Casale combined reforming-based process stream flows</td>
<td>133</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Methanol production by Casale combined reforming-based process major equipment</td>
<td>137</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Methanol production by Casale combined reforming-based process utility summary</td>
<td>139</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Methanol production by Casale combined reforming-based process total capital investment</td>
<td>142</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Methanol production by Casale combined reforming-based process total capital investment by section</td>
<td>143</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Methanol production by Casale combined reforming-based process production costs</td>
<td>144</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Methanol production by Lurgi combined reforming-based process design bases and assumptions</td>
<td>155</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Methanol production by Lurgi combined reforming-based process stream flows</td>
<td>156</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Methanol production by Lurgi combined reforming-based process major equipment</td>
<td>161</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Methanol production by Lurgi combined reforming-based process utility summary</td>
<td>163</td>
</tr>
<tr>
<td>Table 7.5</td>
<td>Methanol production by Lurgi combined reforming-based process total capital investment</td>
<td>166</td>
</tr>
<tr>
<td>Table 7.6</td>
<td>Methanol production by Lurgi combined reforming-based process total capital investment by section</td>
<td>167</td>
</tr>
<tr>
<td>Table 7.7</td>
<td>Methanol production by Lurgi combined reforming-based process production costs</td>
<td>168</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>Methanol production by Johnson Matthey/Davy two-stage reforming-based process design bases and assumptions</td>
<td>175</td>
</tr>
</tbody>
</table>
Table 8.2 Methanol production by Johnson Matthey/Davy two-stage reforming-based process main stream flows
Table 8.3 Methanol production by Johnson Matthey/Davy two-stage reforming-based process major equipment
Table 8.4 Methanol production by Johnson Matthey/Davy two-stage reforming-based process utility summary
Table 8.5 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process total capital investment
Table 8.6 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process total capital investment by section
Table 8.7 Methanol production by Johnson Matthey/Davy Two-stage reforming-based process production costs
Figures

Figure 1.1 Methanol process
Figure 2.1 Global methanol production by region
Figure 2.2 Global methanol capacity by region
Figure 2.3 Global methanol nameplate capacity changes by region
Figure 2.4 Methanol process
Figure 2.5 Methanol production by Haldor Topsoe autothermal reforming process
Figure 2.6 Methanol production by Casale combined reforming-based process
Figure 2.7 Methanol production by Lurgi combined reforming-based process
Figure 2.8 Methanol production by Johnson Matthey/Davy wwo-Stage reforming process
Figure 2.9 Fixed capital investment cost comparison
Figure 2.10 Battery limits investment cost comparison
Figure 2.11 Production costs comparison
Figure 3.1 Global methanol nameplate vs. effective capacity
Figure 3.2 2023 world methanol demand by end use
Figure 3.3 World methanol production by feedstock
Figure 3.4 World production of methanol by region
Figure 3.5 World capacity for methanol by shareholder—2019
Figure 4.1 Methanol process
Figure 4.2 Basic types of SMR reformer
Figure 4.3 Steam methane reforming process flow schematic
Figure 4.4 Syngas clean-up process flow schematic
Figure 4.5 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio
Figure 4.6 Basic methanol production process
Figure 4.7 Steam methane reformer schematic drawing
Figure 4.8 POX Reactor schematic drawing
Figure 4.9 Combined reforming process schematic
Figure 4.10 Autothermal (ATR) reformer schematic
Figure 4.11 Typical methanol synthesis reactor schematic
Figure 4.12 JM/Davy’s gas-heated reformer
Figure 4.13 JM/Davy’s advanced gas-heated reformer
Figure 4.14 Lurgi’s first stage steam producing methanol converter
Figure 4.15 Temperature profile of Lurgi’s first stage steam producing methanol converter
Figure 4.16 Temperature profile of Lurgi’s second stage gas cooled methanol converter
Figure 4.17 Generic autothermal reformer
Figure 4.18 Foster wheeler combustion air preheat economizer
Figure 4.19 Haldor-Topsoe SMR methane conversion as function of temperature and steam to carbon ratio
Figure 4.20 Haldor-Topsoe side fired steam methane reformer drawing
Figure 4.21 H-T Combined reforming process schematic
Figure 4.22 H-T Pure autothermal reforming
Figure 4.23 H-T Autothermal reformer
Figure 4.24 H-T Heat exchange reformer configuration
Figure 4.25 Haldor-Topsoe methanol converter technology
Figure 4.26 H-T 3-column methanol purification distillation train
Figure 4.27 Map of JM/Davy licensed methanol plants
Figure 4.28 Schematic of JM/Davy low pressure methanol process
Figure 4.29 JM/Davy Middle East 3000 tpd methanol plant design using SMR only
Figure 4.30 JM/Davy gas heated reactor
Figure 4.31 JM/Davy advanced gas heated reformer
Figure 4.32 JM/Davy syngas reactors in series configuration
Figure 4.33 JM/Davy syngas reactors in parallel configuration
Figure 4.34 JM/Davy tube cooled methanol converter
Figure 4.35 Linde isothermal methanol converter
Figure 4.36 JM/Davy 2-column methanol distillation train
Figure 4.37 Syngas generation by combined reforming
Figure 4.38 Casale synthesis loop
Figure 4.39 Casale axial-radial catalyst bed and axial-radial pre-reformer shell
Figure 4.40 Methanol Casale ARC methanol converter
Figure 4.41 Isothermal Methanol Converter (IMC) plates and axial-radial converter
Figure 4.42 Methanol Casale 3-column methanol distillation train
Figure 4.43 Lurgi combined reforming synthesis gas generation schematic
Figure 4.44 Lurgi autothermal reformer schematic
Figure 4.45 Lurgi MegaMethanol® synthesis loop
Figure 4.46 Lurgi 2-stage converter reactor system
Figure 4.47 Lurgi steam raising single converter system
Figure 4.48 Lurgi steam raising dual converter system
Figure 4.49 Lurgi 2-column methanol purification via distillation
Figure 4.50 Lurgi 3-column methanol purification via distillation
Figure 4.51 Toyo combined reforming option
Figure 4.52 Toyo MRF-Z methanol converter schematic
Figure 4.53 Toyo methanol converter details
Figure 5.1 Schematic diagram of an ATR
Figure 5.2 Effect of natural gas price on production cost & product value of methanol
Figure 6.2 Effect of natural gas price on production cost & product value of methanol
Figure 7.2 Effect of natural gas price on production cost and product value of methanol
Figure 8.2 Effect of natural gas price on production cost & product value of methanol

Appendix D Figures

Figure 5.1 (1 of 2) Methanol production by Haldor Topsoe autothermal reforming-based process
Figure 5.1 (2 of 2) Methanol production by Haldor Topsoe autothermal reforming-based process
Figure 6.1 (1 of 2) Methanol production by Casale combined reforming-based process
Figure 6.1 (2 of 2) Methanol production by Casale combined reforming-based process
Figure 7.1 (1 of 2) Methanol production by Lurgi combined reforming-based process
Figure 7.1 (2 of 2) Methanol production by Lurgi combined reforming-based process
Figure 8.1 (1 of 2) Methanol production by Johnson Matthey/Davy two-stage reforming-based process
Figure 8.1 (2 of 2) Methanol production by Johnson Matthey/Davy two-stage reforming-based process
Figure 8.1 (2 of 2) Methanol production by Johnson Matthey/Davy two-stage reforming-based process