

Advances in Mixed Plastics Chemical Recycling

PEP Report 199E November 2020

Process Economics Program

PEP Report 199E

Advances in Mixed Plastics Chemical Recycling

Jonny Goyal, Associate Director

Abstract

Plastics represent a serious waste-handling problem, with only 10–15% of the plastic waste (PW) generated worldwide being recycled. The remainder follows a linear economy model, involving disposal or incineration. Chemical recycling is considered an attractive technological pathway to reduce plastics waste, as well as promote a circular economy. Plastic recycling via the gasification route is picking up momentum slowly owing to its availability to handle large scale of waste. Another important reason is that gasification is considered to have a positive impact on net carbon emissions, and further processing of waste plastics can enable the final products of the gasification process to fall under the sustainability tag. Thus, the chemical recycling of plastics via gasification route plays an important role in the circular economy.

This report discusses advanced chemical recycling of plastics via the gasification route. The objective of this report is to evaluate the process economics of associated technologies. PEP presents a comprehensive description on the technological aspects, current industry trends across globe, and major factors related to technological implementation. The following cases are covered in this report:

- 1. Case I-Ebara Ube PTIFG process for chemical recycling of waste plastics
- 2. Case II—Enerkem carbon recycling process for waste plastics
- 3. Case III—Eastman carbon renewal technology for recycling waste polyesters

PEP has used Aspen Plus, Thermoflow, and IHS Markit's internal tools to work out a process design and its economics. The particular characteristics of waste plastics, especially low-thermal conductivity, sticky behavior, high-volatile content, and tar formation, impact their complete (stand-alone) treatment in conventional gasification technologies and involve a challenge for the process implementation. But the gasification flexibility is increased when the waste plastics are co-fed with other feedstocks (especially biomass and coal). An increase in the plastic content in the net gasifier feed improves the H₂ content and gas product-heating value, resulting in a reduction in the utility consumption of downstream product synthesis.

The main challenges associated with the economics of the chemical recycling of plastics via gasification lie with the selection of proper feedstock, plant capacity, downstream high value-added monomer selection, and tipping fee. The chemical recycling of plastics via gasification to monomer confers economic advantages with its promotion in assigning its value to environmental benefits, e.g., CO₂ savings, increased share of biogenic carbon in plastic products, increasing recycling quotas, and/or the potential of the process to compensate for the intermittency of renewable power.

Contents

1	Introduction	14
	Background	16
	Different routes for plastic recycling	17
	Scope of this report (Advances in plastic chemical recycling)	19
	Plastic gasification	19
	Why plastic gasification	22
	Composition of waste plastics	22
	What has been done before	26
2	Summary	27
	Industry aspects	27
	Plastics waste generation data	28
	Technical aspects	29
	Three cases for comparison	31
	Ebara Ube gasification process to recycle plastic waste	31
	Enerkem gasification process for recycling plastics	32
	Eastman carbon renewal technology for recycling polyesters	32
	Economic aspects	34
	Capital cost economics comparison	35
	Product cost economics comparison	36
	Carbon emission summary	37
	Conclusions	37
	Risk factors and overall conclusion	41
3	Industry status	44
	Global plastics and polymers market outlook	44
	Global plastics recycling performance (rate)/ Growing recycling demand/ State of plastic recycling	
	Plastic disposable methods	46
	Global trade flows waste plastics	50
	The recycled plastics value chain	50
	Plastic waste gasification companies and status	52
	Historical projects on the chemical recycling of mixed waste plastics	58
	Texaco gasification process	59
	Waste Gas Technology UK Limited (WGT) process	60
	Lurgi-SVZ Multi-purpose gasification process	61
	Steam gasification process	63
	Linde gasification process	64
	Use of mixed plastic waste in blast furnaces	65
	Plastic waste gasification companies in Japan	66
	JFE Steel Corporation (Feedstock recycling)	66
	Nippon Steel Corporation (Feedstock recycling)	68
	Thermoselect process (Feedstock recycling)	71
	HZC gasification melting process	72
	Kobelco, Japan	73
	Ebara Ube gasification	74
	Other plastic waste gasification companies	77
	Enerkem	77
	Eastman carbon renewal technology	79
	Plasco Energy Group	81
	Covanta CLEERGAS [™]	82
	Concord Blue	83

	Sierra Energy	84
	Powerhouse Energy Group	85
	EQTEC gasification process	86
	Syntech Bioenergy	87
	MILENA gasification (ECN, Synova, Total, Dahlman, Ambigo)	89
	Thermochem Recovery Inc. (TRI)	90
	Energos grate gasification process	91
	APP (Advanced Plasma Power Ltd.)	92
	Fraunhofer's CARBONTRANS pilot plant in Leuna	93
	CHO Power, CHOPEX, France	94
	Ecoloop GmbH	95
	GGI Energy	97
	Neste in Espoo, Finland	98
	Eni, Versalis, and COREPLA joint venture	99
4	Plastic chemical recycling via gasification technology review	100
	Chemical recycling	102
	Plastic chemical recycling via gasification	105
	Plastic gasification mechanism/chemistry	106
	Gasifying agents and waste plastic gasification processes	110
	Air gasification	110
	O ₂ gasification	113
	Steam gasification	113
	Typical bulk gas compositions	115
	CO ₂ and cogasification	116
	Plastic waste pyrolysis and in-steam reforming	120
	Different types of gasifiers	123
	Different gasifier configurations for Waste Plastic Gasification	126
	Fixed/ Moving Bed Gasifier	126
	Co-current (downdraft) moving bed gasifiers	126
	Co-current (updraft) moving bed gasifiers	127
	Crossdraft/other forms of Moving Bed gasifiers	128
	Fludized bed gasifiers	130
	Spouted bed gasifiers	134
	Entrained flow gasifiers	134
	Plasma gasifiers	135
	Reactors used in pyrolysis-reforming processes	136
	Gasifier selection parameters	136
	Products	137
	Brief comparison of gasification technologies	138
	Gasification output	139
5	Case I—Ebara Ube feedstock chemical recycling process for ammonia production	141
5	Introduction	141
		141
	Showa Denko plastic gasification plant	
	Overall process schematic	143
	Ebara Ube gasification technology platform	144
	Case assumptions	148
	Process description	152
	Section 100—Feed preparation section and Air separation unit	152
	Section 200— Gasification and syngas treatment	153
	Section 300—Ammonia synthesis	154
	Process discussion	155
	Cost estimates	166
	Fixed capital costs	166
	Production costs	168

	Sensitivity analysis and cost discussion	170
	Ebara Ube plastic to hydrogen economics	173
	Carbon emission and water consumption	176
	Conclusion	177
6	Case II—Enerkem feedstock chemical recycling process	178
	Introduction	178
	The Enerkem's commercial plant in Edmonton, Canada	179
	City of Edmonton Waste Management Center (EWMC)	179
	Materials Recovery Facility (MRF)	179
	Integrated Processing and Transfer Facility (IPTF)	180
	Preparation of RDF—The feedstock to the Enerkem WTFC Process	181
	The Enerkem technology platform	182
	Syngas to methanol	183
	Case assumptions	185
	Process description	189
	Section 100—Feedstock preparation	189
	Section 200—Gasification, syngas cleaning, and methanol synthesis	189
	Process discussion	190
	Impact of addition of plastics in biomass feedstock in Enerkem's Process	193
	Cost estimates	203
	Fixed capital costs	203
	Production costs	205
	Sensitivity analysis and cost discussion	207
	Carbon emission and water consumption Conclusion	209 210
7	Case III—Eastman carbon renewal technology	210 212
'	Introduction	212
	Eastman gasification at Kingsport, Tennessee	212
	GE quench gasifier basic process operation	214
	Coal water slurry	217
	GE quench gasifier	218
	Case assumptions	219
	Process description	213
	Section 100—Air separation	224
	Section 200—GE quench gasification	224
	Section 300—Gas clean-up and methanol synthesis	225
	Water gas shift	225
	Gas cooling	226
	Mercury removal	226
	Acid gas removal	226
	Methanol plant	227
	Sulfur plant	227
	Impact of waste plastic addition with coal in Eastman gasification process	229
	Process discussion	232
	Investment costs	233
	Production costs	235
	Cost discussion	237
	Carbon emission and water consumption	237
	Conclusion	238

Tables

Table 1.1 Different plastic types, their extent of recyclability, and common use	17
Table 1.2 Hierarchy of plastic recycling	18
Table 1.3 Typical composition of municipal solid wastes (MSW)	19
Table 1.4 Plastics in products in MSW, EPA 2010	20
Table 1.5 Embodied energy for plastic versus fossil fuels	21
Table 1.6 Typical emission from waste gasification vs traditional routes	22
Table 1.7 Main properties of plastic materials found in PSW stream	23
Table 1.8 Typical elements of different plastics	24
Table 1.9 Compatibility of polymers	25
Table 2.1 Summary of chemical recycling types	30
	31
Table 2.2 Drivers for feasibility of plastic chemical recycling processes Table 2.3 Overall comparison of three processes using gasification route for chemical	51
recycling of plastics	33
Table 2.4 Overall comparison of capital investment and production cost	34
Table 2.5 Carbon dioxide emissions and water consumption by process	37
	42
Table 2.6 Summary of barriers to better functioning markets for recycled plastics	42 53
Table 3.1 Major waste gasification technologies around the globe for chemical recycling of plastic	53 60
Table 3.2 Commercial plants based on Texaco gasification technology	
Table 3.3 JFE slagging gasification reference facilities	66
Table 3.4 Nippon Steel DMS reference facilities	70
Table 3.5 Various Thermoselect facilities around globe	72
Table 3.6 Hitachi Zosen slagging gasification reference facilities	73
Table 3.7 Kobelco slagging gasification reference facilities	74
Table 3.8 Ebara TwinRec reference facilities	75
Table 3.9 Ebara slagging gasification reference facilities	76
Table 3.10 Comparison of slag leaching data from the leading gasification plant suppliers in Japan	77
Table 3.11 Enerkem reference plants	79
Table 4.1 Basic terminology for plastic recycling	100
Table 4.2 Results obtained by different authors in waste plastic air gasification	111
Table 4.3 Results obtained by different authors in waste plastic steam gasification	114
Table 4.4 Typical bulk gas compositions for three different gasification systems	116
Table 4.5 Results obtained by different authors in the cogasification of waste plastics with	
other feedstocks	117
Table 4.6 Results obtained by different authors in the H ₂ production from plastic wastes in	
alternative processes to gasification	120
Table 4.7 A brief comparison of the different gasifying agents with their advantages and	
disadvantages	123
Table 4.8 Developers of moving bed waste pyrolysers and gasifiers	129
Table 4.9 Developers of fluidized bed gasifiers	132
Table 4.10 Thermal capacity of different gasifier designs	132
Table 4.11 Typical gas composition in a BFB gasifier fed with waste-derived and biomass fuels	133
Table 4.12 Typical gas composition in a CFB gasifier fed with waste-derived and biomass fuels	133
Table 4.13 Product gas composition for gasification of various types of feedstock in vol%	133
Table 4.14 Typical gasification reactor characteristics	137
Table 4.15 Gasifier different syngas characteristics	138
Table 4.16 Comparison of the gasification technologies	139
Table 4.17 Summary of the TRL's of cracking and gasification technologies for waste plastic	
applications	140
Table 5.1 Ebara Ube waste plastic gasification for ammonia production (Case I)—Basis of design	150
Table 5.2 Ebara Ube waste plastic gasification for ammonia production (Case I)-Material	
stream flows	158
Table 5.3 Ebara Ube waste plastic gasification for ammonia production (Case I)—Major equipment	163
Table 5.4 Ebara Ube waste plastic gasification for ammonia production (Case I)—Utility summary	165

Table 5.5 Ebara Ube waste plastic gasification for ammonia production (Case I)-Total	
capital investment	167
Table 5.6 Ebara Ube waste plastic gasification for ammonia production (Case I)—Production cost Table 5.7 Sensitivity analysis Case I: Impact of feedstock price on net production cost and product	169
value—At base capacity of 175 t/day of ammonia output	171
Table 5.8 Ebara Ube waste plastic gasification for hydrogen production (Case II)-Total	
capital investment	173
Table 5.9 Ebara Ube waste plastic gasification for hydrogen production—Production cost	174
Table 5.10 Sensitivity analysis Case II: Impact of feedstock price on net production cost and product	
value—At base capacity of 4.4 billion scf/yr of hydrogen output	176
Table 5.11 Carbon emission and water consumption—Ebara Ube ammonia process	177
Table 6.1 Items collected for recycling at MRF facility in Edmonton's commercial plant	180
Table 6.2 Enerkem waste plastic gasification for methanol production (Case II)—Basis of design	187
Table 6.3 Enerkem feedstock chemical recycling process (Case II)—Material stream flows	195
Table 6.4 Enerkem feedstock chemical recycling process (Case II)—Major equipment	200
Table 6.5 Enerkem feedstock chemical recycling process (Case II)—Utility summary	202
Table 6.6 Enerkem feedstock chemical recycling process (Case II)—Total capital investment	204
Table 6.7 Enerkem feedstock chemical recycling process for methanol production (Case II)-	
Production cost	206
Table 6.8 Sensitivity analysis Case II: Impact of feedstock price on net production cost and product	
value—At base capacity of 100,000 tpy of input (Enerkem)	208
Table 6.9 Carbon emission and water consumption—Enerkem gasification process	210
Table 7.1 Eastman carbon renewal technology—Design basis	221
Table 7.2 Eastman CRT Gasification process (Case III)—Material stream flows	228
Table 7.3 Eastman CRT Gasification process (Case III)—Utility summary	229
Table 7.4 Typical proximate and ultimate analysis of carpet material	230
Table 7.5 Comparison syngas composition GE quench gasifier after waste plastic addition	231
Table 7.6 Eastman CRT gasification process (Case III)—Total capital investment	234
Table 7.7 Eastman CRT Gasification process (Case III)—Production cost	236
Table 7.8 Carbon emission and water consumption—Eastman CRT	238

Figures

Figure 1.1 Global plastics production	14
Figure 1.2 Global status of plastics recycling	15
Figure 1.3 Common polymers derived from crude oil and natural gas raw materials	16
Figure 1.4 Polymer recycling categories	18
Figure 1.5 Energy value of NRP compared to fossil fuels used in the United States	20
Figure 1.6 Nonrecycled plastic products in landfilled MSW	21
Figure 2.1 Plastic production mass by global region 2016–18	27
Figure 2.2 Global plastic waste generation by polymer (million tons), year 1950 to 2015	28
Figure 2.3 Estimated global market share of virgin and recycled plastics	28
Figure 2.4 Capital cost economics comparison	35
Figure 2.5 Production cost comparison	36
Figure 3.1 Global plastic demand	44
Figure 3.2 Prime plastics and recycled plastic demand growth by 2030	45
Figure 3.3 Recycled content in global plastic production	45
Figure 3.4 Global plastic waste generation, recycling, incineration, and disposal: from year	
1950 to 2015	47
Figure 3.5 Percentage of different polymer types in the total plastics portion of municipal solid waste	47
Figure 3.6 Projected waste generation by region	48
Figure 3.7 MSW generation by country and disposal method	49
Figure 3.8 Availability of recycling program by material in the United States	49
Figure 3.9 Top ten global exporters of waste plastics, 2006 to 2015 (excluding HK)	50
Figure 3.10 Market value of major polymers	51
Figure 3.11 Texaco gasification process block flow diagram	60
Figure 3.12 Waste Gas Technology (WGT) UK process schematic	61
Figure 3.13 SVZ Schwarze Pumpe Plant Block Flow Diagram	63
Figure 3.14 AKZO steam gasification process for plastic recycle	64
Figure 3.15 Linde gasification process for plastic recycle	65
Figure 3.16 JFE steel blast furnace feedstock recycling process	67
Figure 3.17 Schematic of JFE gasifying and melting furnace	68
Figure 3.18 Nippon Steel: coke oven chemical feedstock recycling process	69
Figure 3.19 Process flow diagram of the Nippon Steel DMS process	71
Figure 3.20 Simplified flow diagram of the Thermoselect process for gasification of waste	72
Figure 3.21 Hitachi Zosen gasification process	73
Figure 3.22 Ebara Ube Plastic gasification process	77
Figure 3.23 The BIOSYN Process	78
Figure 3.24 Enerkem's biorefinery process	79
Figure 3.25 Eastman's circular solutions	80
Figure 3.26 Eastman: Flow diagram for chemicals from coal facility	81
Figure 3.27 Block flow diagram of the Plasco Energy Conversion technology	81
Figure 3.28 Covanta CLEERGAS gasification process	82
Figure 3.29 Concord Blue gasification process	83
Figure 3.30 Sierra Energy gasification process	84
Figure 3.31 Powerhouse DMG process of plastic recycling	85
Figure 3.32 Typical feedstock properties and syngas composition of Powerhouse DMG process	86
Figure 3.33 EQTEC gasification process	87
Figure 3.34 General process scheme for the gasification system of Syntech Bioenergy UK	88
Figure 3.35 The MILENA gasification reactor	89
Figure 3.36 The TRI gasification system	90
Figure 3.37 The Energos process	92
Figure 3.38 The Gasplasma process	93
Figure 3.39 Fraunhofer's CARBONTRANS Pilot plant	94
Figure 3.40 Process flow schematic for the CHO power process	95
Figure 3.41 Ecoloop GmbH plastic depolymerization unit in Germany	96
Figure 3.42 Ecoloop GmbH gasifier system	97

Figure 3.43 General schematic of GGI Energy process	98
Figure 4.1 Routes for recycling of solid plastic waste	101
Figure 4.2 Possible chemical products obtained through feedstock thermochemical recycling	102
Figure 4.3 Overview of different loops for plastics in circular economy	103
Figure 4.4 Schematic of recycling methods and their position within the processing line	104
Figure 4.5 Flow diagram of conventional gasification of MSW	105
Figure 4.6 The main steps occurring in gasification	106
Figure 4.7 Conceptual view of plastics waste chemical conversion via gasification	107
Figure 4.8 Tar formation and evolution pathways in the gasification of different plastics	109
Figure 4.9 Schematic of ash behavior during gasification	110
Figure 4.10 Equivalence ratio impact on syngas calorific value and its yield—air gasification	112
Figure 4.11 Equivalence ratio impact on syngas calorific value and its yield—steam gasification	115
Figure 4.12 Effect of plastic contents on syngas yield and H ₂ production—cogasification	119
Figure 4.13 Effect of plastic contents on tar content and LHV—cogasification	119
Figure 4.14 Effect of temperature and S/C ratio on H ₂ production—plastic cogasification	122
Figure 4.15 Different allothermal gasifiers	125
Figure 4.16 Scheme of downdraft and updraft gasifiers for plastic gasification	127
Figure 4.17 Crossdraft/other forms of moving bed gasifiers for plastic gasification	128
Figure 4.18 Schemes for bubbling, circulating, and dual fluidized beds gasifiers	130
Figure 4.19 A scheme of a conical spouted bed reactor	134
Figure 4.20 A scheme of an entrained flow reactor	135
Figure 4.21 Different reactor configurations used in the pyrolysis and in-line reforming process	136
Figure 4.22 Gasification output pathways	139
Figure 5.1 Flow of gasification chemical recycling for plastic waste (Ebara Ube)	141
Figure 5.2 Mechanism of recycling Showa Denko plastic gasification plant	142
Figure 5.3 The Showa Denko gasification plant in Ogimachi, Kanagawa Prefecture	143
Figure 5.4 Extended block flow diagram of Showa Denko plastic gasification plant	144
Figure 5.5 TwinRec core components: Gasifier and ash melting furnace	145
Figure 5.6 EUP pressurized twin internally circulating fluidized bed gasification system	146
Figure 5.7 Process of synthesizing ammonia from waste (patent EP0803562 B1)	147
Figure 5.8 EUP gasification reactor system (patent US 6161490) Figure 5.9 Ebara Ube waste plastic gasification for ammonia production (Case I)—Effect of plant	148
capacity on investment cost Figure 5.10 Impact of feedstock price on net production cost and product value, Case I (For base capacity of 195 t/day of waste plastic input feedstock producing 175t/day of ammonia)	168 171
Figure 5.11 Ebara Ube waste plastic gasification to ammonia product—Product value of ammonia as a function of operating level and plant capacityFigure 5.12 Ebara Ube waste plastic gasification to ammonia product—Net production cost of	172
ammonia as a function of operating level and plant capacity Figure 5.13 Impact of feedstock price on net production cost and product value (For base capacity of 195 t/day of waste plastic input feedstock producing 4.4 billion scf/yr of hydrogen)	172 176
Figure 6.1 Enerkem Technologies schematic diagram Figure 6.2 Basic sections of Integrated Processing and Transfer Facility (IPTF) in Edmonton's commercial plant	178 181
Figure 6.3 Block flow diagram of the pre-processing plant in Edmonton's commercial facility	181
Figure 6.4 Enerkem technology platform	182
Figure 6.5 Enerkem liquid phase methanol process	184
Figure 6.6 Enerkem process scheme as shown in patent CA 2664028	184
Figure 6.7 Enerkem gasifier diameter scale up	192
Figure 6.8 Ratio of methanol production for plastic mixture feedstocks compared with 100% biomass feedstock, for Enerkem gasification)Figure 6.9 Syngas concentration trends for NRP pilot trials in Enerkem gasification plant	193 194
Figure 6.10 Simplified PFD of syngas adjustment to achieve the necessary H ₂ /CO ratio and quality of methanol production Figure 6.11 Enerkem feedstock chemical recycling process (Case II)—Effect of plant capacity on	195
investment cost	205

Figure 6.12 Impact of feedstock price on net production cost and product value Case II (For base capacity of 100,000 tpy of input feedstock that yield 198.63 million lb/yr of Methanol)— Enerkem	208
Figure 6.13 Enerkem feedstock chemical recycling to methanol—Product value of methanol as a	
function of operating level and plant capacity	209
Figure 6.14 Enerkem feedstock chemical recycling to methanol—Net production cost of methanol	
as a function of operating level and plant capacity	209
Figure 7.1 Eastman approach to chemical recycling of plastics	213
Figure 7.2 Eastman carbon renewal technology	214
Figure 7.3 Gasification at Eastman (Basic Flow Diagram)	215
Figure 7.4 Gasification basics: Eastman configuration	216
Figure 7.5 Acetyl flow at Eastman chemical facility	217
Figure 7.6 GE quench gasifier in Eastman's Kingsport facility	219
Figure 7.7 Basic Flow Diagram of Eastman carbon renewal technology	223
Figure 7.8 Schematic drawing of a typical MRF operation	232
Figure 7.9 Eastman CRT process (Case III)—Effect of plant capacity on investment cost	235

Appendix C Figures

Figure 8.1 Ebara Ube plastic gasification process (Case I)	268
Figure 8.1 Ebara Ube plastic gasification process (Case I) continued	269
Figure 8.1 Ebara Ube plastic gasification process (Case I) continued	270
Figure 8.2 Enerkem gasification process (Case II)	271
Figure 8.2 Enerkem gasification process (Case II) continued	272
Figure 8.3 Eastman Carbon Renewal Technology (Case III)	273

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Writher IHS
Markit logos and trade names contained in this presentation in the event that any content, opinion, statements, estimates, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright© 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

