

LNG Regasification Terminal

PEP Review 2020-06 November 2020

Subodh Sarin Associate Director

Process Economics Program

PEP Review 2020-06

LNG Regasification Terminal

Subodh Sarin, Associate Director

Abstract

From 2000 to 2019, global natural gas production increased from 2,440 to 4,000 standard Bcm (80,060 to 140,800 standard Bcf), at an average growth rate of 2.6% p.a. The United States registered the highest growth, nearly 4.4% p.a., and is now the biggest producer of natural gas. ([1] IHS Markit, 2019)

Natural gas is, after oil and coal, the third-largest energy provider in the world today. It is a cleaner source of energy and is therefore replacing coal and oil in many applications. According to an IHS Markit projection, gas consumption will overtake coal by mid-2020s and oil by 2050. ([2] IHS Markit, 2019)

Over long distances, natural gas is cooled and liquefied for transport in specially designed LNG carriers. LNG trade is increasing at a much faster rate than the increase in natural gas production. In 2019, about 12% of the natural gas produced was traded as LNG, up from about 7.5% in 2008. LNG now accounts for approximately one-third of all traded natural gas. ([7] BP Statistical Review of World Energy, 68th edition, 2019).

As of 2019, there are 42 LNG importing countries and 21 exporting countries ([4] International Group of Liquefied Natural Gas Importers, 2019).

At its destination, LNG is converted back into natural gas for consumption as an energy source in regasification terminals.

There are approximately 200 existing functional regasification terminals in the world today and another 45 under construction. Sizes range from tiny (<0.1 MMtpa) peak shaving facilities, to large (>2, all the way up to 50 MMtpa) facilities catering to multiple users (power plants, industrial complexes, distribution companies). ([5] IHS Markit, 2020)

This review addresses the technology and economics of an LNG regasification terminal, with a processing capacity of 4 MMtpa of LNG, and using ORV (Open Rack Vaporizer) and SCV (Submerged Combustion Vaporizer), which are the dominant regasification technologies today.

It includes the process flow diagram, material balance, major equipment sizes, and specifications. Cost data—including battery limit and offsite costs, variable costs, capex, opex, and overall production costs—is provided.

This review provides insight into various aspects of the technical design of such a facility. It can be used as a tool for cost estimation for different plant capacities. It will be beneficial for planners, producers, and designers who are looking for independent data for ethane export terminals.

An interactive iPEP Navigator module of the process is included, which provides a snapshot of the process economics and allows the user to select the units and global region of interest.

The technological and economic assessment of the process is PEP's independent interpretation of a commercial process based on information presented in open literature (such as patents or technical articles) or in-house generated data (e.g., HYSYS simulation, equipment cost estimation). While this assessment may not reflect actual plant data fully, we do believe that it is a sufficient representation of the process and process economics within the range of accuracy necessary for economic evaluations of process design.

Contents

1	Introduction	5
2	Summary	6
3	Industry status	8
	3.1 Natural gas	8
	3.2 LNG import-export	8
	3.3 LNG—Largest importing-exporting countries	9
	3.4 LNG regasification terminals—Existing and under construction	10
4	Technology review	20
	4.1 Send-out capacity	21
	4.2 LNG feed composition	21
	4.3 Natural gas properties of interest	22
	Calorific value	22
	Wobbe Index	23
	4.4 Quality adjustment for send-out natural gas	24
	4.5 Odorization	25
	4.6 FSRU versus onshore	25
	4.7 LNG storage tank	26
	4.8 Boil-off gas	27
	4.9 Vaporizing technologies	28
	4.9.1 Open Rack Vaporizers (ORV)	28
	4.9.2 Submerged Combustion Vaporizers (SCV)	29
	4.9.3 Intermediate Fluid Vaporizers (IFV)	31
	4.9.4 Intermediate Fluid (Hydrocarbon) in Rankine Cycle	33
	4.9.5 Air vaporizers (AAV/FAV)	34
	4.10 Cold recovery	35
	4.11 Natural gas a bridge fuel	36
	4.12 Weathering considerations	37
	4.13 Possible environmental objections for the selected vaporization technology	37
5	Process review—LNG regasification terminal	39
	5.1 Basis of design	39
	5.2 Process description	40
	Section 100—Jetty, unloading arms, seawater package	41
	Section 200—LNG storage	41
	Section 300—Vaporization, BOG handling system, odorizing, metering	41
	5.3 Offsites and general service facilities	42
	5.4 Cost estimates	46
	Fixed capital costs	46
	Production costs	46

Tables

Table 2.1 Unit costs/consumptions	7
Table 3.1 LNG regasification terminals 2020: Existing (excludes decommissioned and mothballed)	11
Table 3.2 LNG regasification terminals under construction, by region—2020	17
Table 3.3 LNG regasification terminals under construction, by projects—2020	18
Table 4.1 LNG plant capacity worldwide	21
Table 4.2 LNG feed composition in different countries	22
Table 4.3 LNG composition	22
Table 4.4 Calorific value of common constituents of natural gas	23
Table 4.5 FSRU versus onshore terminals	26
Table 4.6 LNG Plants worldwide—Onshore/offshore	26
Table 4.7 Specific carbon dioxide emissions of various fuels	36
Table 5.1 Basis of design	39
Table 5.2 Stream flows	43
Table 5.3 Major equipment	45
Table 5.4 Utility summary	45
Table 5.5 Total capital investment	47
Table 5.6 Capital investment by section	48
Table 5.7 Production costs	48
Table 5.8 Carbon and water footprint	50

Figures

Figure 3.1 Primary energy demand by fuel	8
Figure 3.2 Natural gas transportation cost	9
Figure 3.3 Existing regasification capacity, end-2019	10
Figure 3.4 Regasification capacity under construction by market, end-2019	17
Figure 4.1 Full containment LNG storage tank	27
Figure 4.2 Open Rack Vaporizer	29
Figure 4.3 Submerged Combustion Vaporizer	30
Figure 4.4 Intermediate Fluid Vaporizer	31
Figure 4.5 Intermediate Fluid Vaporizer—Heat sources	32
Figure 4.6 Intermediate Fluid Vaporizer—Osaka Gas	33
Figure 4.7 Rankine Cycle	33
Figure 4.8 ORC schematic—Basic design	34
Figure 4.9 Air vaporizer schematic	35

Appendix C Figure

Figure 5.1 LNG regasification terminal

59

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Histither IHS
Markit or the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient, wetther in contract, in tort (including negligence), under warranty, under statute or
otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

