Large-scale Pyrolysis—Plastic Chemical Recycling

PEP Report 199G
November 2021

Jonny Goyal
Director, Process Economics Program

Rajesh Verma
Director, Process Economics Program
Contacts

Jonny Goyal
Director, Process Economics Program
jonny.goyal@ihsmarkit.com

Rajesh Verma
Director, Process Economics Program
rajesh.verma@ihsmarkit.com

Michael Arné
Vice President, Process Economics Program
michael.arne@ihsmarkit.com
PEP Report 199G

Large-scale Pyrolysis—Plastic Chemical Recycling

Jonny Goyal, Director, Process Economics Program
Rajesh Verma, Director, Process Economics Program

Abstract

Plastic has become one of the most ubiquitous materials in our lifestyle. However, the proliferation of plastics that contaminate rivers, oceans, and landfills has also brought adverse environmental consequences. This is a major global challenge and has sparked a strong interest in the more efficient production, use, and disposal of plastics, in line with the principles of the circular economy. There is also increasing regulatory pressure regarding recycling quota and recyclability along with strong commitments from global chemical industries toward increasing the share of recycled material in their offerings. As the chemical makers are under pressure to solve the plastic waste problem, firms are increasingly exploring chemical recycling as a complement to traditional mechanical techniques, which reform the plastic into a usable pellet only. However, the capacity of plastic chemical recycling via pyrolysis is limited because the technology solution is at only 10–50 tpd of plant capacity. Large-scale pyrolysis is being investigated as an option so that a large volume of plastic waste can be handled.

This report is focused on chemical recycling of plastics, mainly polyolefins from mixed waste plastics, using large-scale pyrolysis in plants with capacity ranging from 300 to 2,000 tpd. The objective of this report is to evaluate the process economics of such large-sized plants. IHS Markit presents a comprehensive description of the technology aspects, shows the current worldwide industry status, and discusses the major risk factors related to technology implementation. We also explore the factors that will eventually decide the large scale and various options for upgrading pyrolysis oil for different scales of pyrolysis plants. The following cases are covered in this report:

• Case I: Brightmark’s 317 tpd of plastic pyrolysis plant in Ashley, Indiana, United States
• Case II: A 1,000 tpd large-scale pyrolysis under various scenarios
• Case III: A 2,000 tpd large-scale pyrolysis under various scenarios, including the use of different specific feedstocks and associated yields

We have used the IHS Markit internal tools to work out a process design and its economics. We have addressed the issue of pyrolysis oil quality by implementing downstream hydrotreating and dewaxing units, as applicable, to develop capital investment estimates for the various process cases. The main challenges associated with the economics of large-scale plastic pyrolysis processes are ensuring feedstock quality, supply and price over the long term, choice of products and by-products, reactor size and catalyst, and tipping fee. Targeting high-market price products provides benefits where the economics can be met at medium-to-high-range pyrolysis plants with a tpd greater than 1,000. Feedstock quality plays a critical role and high feedstock price may need to be considered. On the other hand, large-scale pyrolysis plants with a 2,000 tpd capacity can potentially be economically viable, depending upon the conditions of the product market prices. It is difficult to predict if the industry will be going directly toward the implementation of a 2,000 tpd plant for chemical recycling because the technology is not yet mature. Most of the current pyrolysis players now use a modular approach of 10–
50 tpd. To bring it to an industrial scale, chemical recycling needs to strike a balance between economic viability, regulatory compliance, and environmental impact.
Contents

1 Introduction 10
2 Summary 12
 Three cases for comparison 12
 Brightmark’s plastic pyrolysis process in Ashley, Indiana 13
 Brightmark’s 1,000 tpd plastic pyrolysis conceptual design—Scale up 13
 A 2,000 tpd single-train mixed waste plastic pyrolysis plant 13
Economic aspects 14
 Capital cost economics comparison 15
 Product cost economics comparison 16
Carbon emissions summary 17
Conclusions 18
 Some other important points 19
3 Industry status 21
 Plastic-to-oil companies, technology type, and status 21
 New Hope Energy/ Lummus Technology 31
 Brightmark (RES Polyflow) 31
 Mura-KBR/Licella’s Cat-HTR (hydrothermal treatment process) 31
 Encina 31
 LyondellBasell 32
 Plastic Energy™/Cynar 33
 Agilyx 33
 Recycling Technologies 34
 Renewlogy (formerly PK Clean) 34
 Alterra Energy (formerly Vadxx Energy) 35
 Total/Synova/Technip Energies 35
 Nexus Fuels, LLC 36
4 Large-scale plastic pyrolysis technology review 37
 The issues with crude pyrolysis oil 45
 Upgrading pyrolysis oil 49
 Upgrading using catalytic cracking 49
 Upgrading using simple distillation or blending purpose 50
 Upgrading by hydrotreating and/or hydrocracking/hydroprocessing 51
 Dewaxing 56
 Other fuel finishing operations 58
 Fuel additives 58
 Commercial references for pyrolysis oil upgrading units 59
 Upgradation of pyrolysis oil for different scale pyrolysis 60
 Main factors defining the large-scale capacity for a plant 63
 Population density and the location of the plant 63
 Limitation on the upstream material recycling facility and its capacity 63
 Reactor size limitations (technology licensor’s perspective) 64
 Deciding the end product beforehand (only as blending fuel, combined heat power fuel, or as monomer) 65
 Business model/possible solution/or the way forward 65
 Other factors and comparisons 66
 Sense of urgency and government regulations 66
5 Case I: Brightmark (RES Polyflow) pyrolysis process 68
 # Disclaimer 68
 Introduction 68
 Case assumptions 68
 Process description 71
 Section 100—Feed preparation 72
 Section 200—Plastic conversion and vapor condensation 72
 Section 300—Hydrotreating, fractionator, and fuel gas cleaning 73
Section 400—Dewaxing section

Process discussion

Brightmark process configuration and type
Description of reactor and equipment assembly
Plant capacity, feedstock composition, and flow rate
Brightmark process yield
Process fuel gas and solid char
Product quality of Brightmark process
Hydrotreater
Fractionator
Commercial-grade wax quality from the Brightmark process/dewaxing unit
Materials of construction
Emissions

Cost estimates
Fixed capital costs
Production costs
Sensitivity analysis and cost discussion
Conclusions

6 Case II: Brightmark 1,000 tpd plastic pyrolysis conceptual design—Scale up

Case introduction
Sensitivity analysis and cost discussion—Single-train 1,000 tpd Brightmark
Sensitivity analysis and cost discussion—Two trains, 500 tpd each (Brightmark)
Conclusions

7 Case III: IHS Markit conceptual design for a large-scale (2,000 tpd) waste plastic pyrolysis plant for liquid fuel production

Introduction
Process design basis
Storage facility
Material of construction

Process description
Pyrolysis feed preparation section (Section 100)
Pyrolysis reaction section (Section 200)
Pyro product hydrotreatment section (Section 300)
Pyro product fractionation section (Section 400)

Process discussion
Feedstock composition
Plant capacity and location
Feed pretreatment facility
Size reduction and sorting
Dehydrochlorination

Pyrolysis section
Pyrolysis reactor
Fluidizing medium
Pyrolysis operating conditions
Heating rate
Temperature
Particle size
Residence time
Pressure
Catalyst
Pyro oil quality
Pyro oil hydrotreatment
Operating conditions
Catalyst
Product fractionation

Emission and wastes

Cost estimates
Fixed capital costs
Production costs
8 Sensitivity analysis

Process economics for two trains, with 1,000 tpd capacity each, operating in parallel (Diesel_Case-1) 161
Process economics for eight trains, with 250 tpd capacity each, operating in parallel with common product purification and recovery sections (Diesel_Case-2) 162
Process economics for eight trains, with 250 tpd capacity each, operating in parallel with separate product purification and recovery sections (Diesel_Case-3) 163
Process economics for hydrotreated pyro oil (Base case) 164
Process economics for hydrotreated pyro oil (Case-4) 165
Process economics for hydrotreated pyro oil (Case-5) 166
Process economics for hydrotreated pyro oil (Case-6) 167
Process economics for hydrotreated pyro oil (Case-7) 168
Process economics for hydrotreated pyro oil (Case-8) 169
Process economics for hydrotreated pyro oil (Case-9) 170
Process economics for hydrotreated pyro oil (Case-10) 171

Appendix A—Cited references 177
Appendix B—Patents 185
Appendix C—Process flow diagrams 187

Tables

Table 2.1 Drivers for feasibility of plastic chemical recycling processes 12
Table 2.2 Overall comparison of different large-scale plastic pyrolysis process cases evaluated 14
Table 2.3 Overall comparison of capital investment and product cost 15
Table 3.1 Companies that recycle plastics via thermal way 23
Table 4.1 Typical operating parameters and products for pyrolysis process 37
Table 4.2 Typical heat requirements for pyrolysis of different plastics 38
Table 4.3 Main resin types in recycled plastic waste streams and their pyrolysis products 38
Table 4.4 Typical comparison of pyrolysis oil from different feedstocks versus conventional diesel oil 39
Table 4.5 Typical elemental analysis of different plastic waste 40
Table 4.6 Typical elemental analysis of pyrolysis oil produced from different plastics 41
Table 4.7 Summary of studies on different pyrolysis using different reactors and operating conditions 42
Table 4.8 Overview of different pyrolysis reactor types, their typical comparison for use for the pyrolysis process 43
Table 4.9 A typical gas composition after pyrolysis of different plastics 44
Table 4.10 Different plastic types listed by heteroatoms 45
Table 4.11 An estimation of the levels of contaminants present in crude oil and postconsumer plastics 45
Table 4.12 Purification and upgrading of pyrolysis liquid oils 46
Table 4.13 Typical pyrolysis oil composition from the pyrolysis of different plastics 47
Table 4.14 Properties of conventional crude oils 48
Table 4.15 Typical crude oil assays for the different specifications and comparison 49
Table 4.16 Effect of catalytic cracking on the quality of different plastic pyrolysis oils 50
Table 4.17 Conventional hydrotreating and hydrocracking ranges of H2 partial pressure and conversion 54
Table 4.18 Typical operating parameters used for hydroprocessing of plastic pyrolysis oil 54
Table 4.19 Different properties of MEK and toluene as a solvent for dewatering process 57
Table 4.20 Impact of dewatering solvent composition on dewatering process operating conditions 58
Table 4.21 Some of the licensors for upgrading pyrolysis oil from plastics 60
Table 5.1 Brightmark pyrolysis process for plastic recycling (Case I)—Basis of design 70
Table 5.2 Unit material balance and key performance parameters 75
Table 5.3 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input) for Case-1—Material stream flows (in lbs/hr) 76
Table 5.4 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input) for Case-1—Major equipment 84
Table 5.5 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input) for Case-1—Utility summary 92
Table 5.6 Reference of commercial vessel volume from US 20170283706A1 (Table 5) 92
Table 5.7 Feed mixture composition, wt% (as adopted from Table 1 in US 20170283706A1) 93
Table 5.8 Pyrolysis oil from Brightmark process—ASTM distillation data from US 20170283706A1 (Table 5) 95
Table 5.9 Fully refined paraffin wax 52/54 properties (as obtained from vendor website) 97
Table 5.10 Brightmark pyrolysis process—Net CO2 emission 99
Table 5.11 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case-1 101
Total capital investment 101
Table 5.12 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1 102
Total capital investment by section 102
Table 5.13 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1 105
Production costs 105
Table 5.14 Sensitivity analysis—Impact of wax price on net production cost and product value 107
Table 5.15 Sensitivity analysis—Impact of feedstock price on net production cost and product value 109
Table 6.1 Brightmark 1,000 tpd plastic pyrolysis conceptual design—Single train (Scenario 1) 113
Table 6.2 Sensitivity analysis—Impact of wax price on net production cost and product value 114
Table 6.3 Sensitivity analysis—Impact of feedstock price on net production cost and product value 115
Table 6.4 Brightmark 1,000 tpd plastic pyrolysis conceptual design—Two trains 500 tpd each (Scenario 2) 118
Table 6.5 Sensitivity analysis—Impact of wax price on net production cost and product value 119
Table 6.6 Sensitivity analysis—Impact of feedstock price on net production cost and product value 120
Table 7.1 IHS Markit conceptual design for large-scale waste plastic pyrolysis to liquid fuel—Design bases and assumptions 123
Table 7.2 Unit material balance and key performance parameters 129
Table 7.3 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Major streams flow 130
Table 7.4 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Major equipment 138
Table 7.5 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Utility summary 142
Table 7.6 Waste plastic feedstock composition 143
Table 7.7 Some industrial facilities for plastic pyrolysis (thermal and catalytic process) 150
Table 7.8 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Total capital investment 154
Table 7.9 IHS Markit conceptual design for large-scale waste plastic pyrolysis to liquid fuel—Capital investment by section Error! Bookmark not defined.
Table 7.10 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Variable costs 157
Table 7.11 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Production costs 158
Table 8.1 Large-scale waste plastic pyrolysis plant for liquid fuel production with two trains operating in parallel—Production costs 162
Table 8.2 Large-scale waste plastic pyrolysis plant for liquid fuel production with eight trains operating in parallel with common product purification and recovery section—Production costs 163
Table 8.3 Large-scale waste plastic pyrolysis plant for liquid fuel production with eight trains operating in parallel with separate product purification and recovery sections—Production costs 164
Table 8.4 Large-scale waste plastic pyrolysis plant for hydrotreated Pyro Oil production (Base case—Production costs 165
Table 8.5 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-1)—Production costs 166
Table 8.6 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-2)—Production costs 167
Table 8.7 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-3)—Production costs 168
Table 8.8 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-4)—Production costs 169
Table 8.9 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-5)—Production costs 170
Table 8.10 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-6)—Production costs 171
Table 8.11 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-7)—Production costs 172
Figures

Figure 2.1 Capital cost comparison 16
Figure 2.2 Production cost comparison 17
Figure 3.1 KIT fast pyrolysis process scheme 32
Figure 3.2 Typical representation of Plastic Energy/Cynar Plastic recycling process 33
Figure 3.3 Agilyx technology supplied to GenAgain—Process flow diagram 34
Figure 3.4 Process flow scheme—Nexus Fuel plastic pyrolysis process 36
Figure 4.1 Typical scheme of single-stage hydrotreater 54
Figure 4.2 Typical scheme of single-stage hydrotreater 55
Figure 4.3 Simplified flow diagram of a dewaxing plant 57
Figure 4.4 Pyrolysis oil upgrading (Option 1) 61
Figure 4.5 Pyrolysis oil upgrading (Option 2) 62
Figure 4.6 Pyrolysis oil upgrading (Option 3) 62
Figure 4.7 Positioning MRF for plastic chemical recycling of large-scale plants 64
Figure 5.1 Basic set-up of trains for Brightmark’s plastic pyrolysis process 90
Figure 5.2 A typical arrangement of Brightmark’s pyrolysis process equipment configuration 91
Figure 5.3 Brightmark (RES Polyflow) pyrolyzer reactor system arrangement (US 20170283706A1) 92
Figure 5.4 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1 104
Effect of plant capacity on investment cost 104
Figure 5.5 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1 107
Effect of plant operating level on net production cost 107
Figure 5.6 Sensitivity analysis—Impact of wax price on net production cost and product value 108
Figure 5.7 Sensitivity analysis—Impact of feedstock price on net production cost and product value 109
Figure 6.1 Preliminary scheme for a 1,000 tpd plastic pyrolysis with single train (Scenario 1) 112
Figure 6.2 Sensitivity analysis—Impact of wax price on net production cost and product value 114
Figure 6.3 Sensitivity analysis—Impact of feedstock price on net production cost and product value 116
Figure 6.4 Preliminary scheme for 1,000 tpd plastic pyrolysis with two trains (scenario 2) 117
Figure 6.5 Sensitivity analysis—Impact of wax price on net production cost and product value 119
Figure 6.6 Sensitivity analysis—Impact of feedstock price on net production cost and product value 121
Figure 7.1 Effect of plant capacity on investment costs 159
Figure 7.2 Effect of waste plastic feed price on net production cost and product value 159
Figure 7.3 Effect of light oil by-product price on net production cost and product value 160
Figure 7.4 Effect of plant operating level on net production cost 160
Figure 8.1 Capital cost comparison for diesel production 172
Figure 8.2 Comparison of production costs for diesel production 173
Figure 8.3 Capital cost comparison for pyro oil production 174
Figure 8.4 Production costs comparison for pyro oil production 175
Figure 8.5 Effect of paraffin wax by-product price on pyro oil net production cost and product value (Case-5) 176

Appendix C Figures

Figure 9.1 PFD 1 of 4: Brightmark plastic pyrolysis process (Case I) 188
Figure 9.1 PFD 2 of 4: Brightmark plastic pyrolysis process (Case I) 189
Figure 9.1 PFD 3 of 4: Brightmark plastic pyrolysis process (Case I) 190
Figure 9.1 PFD 4 of 4: Brightmark plastic pyrolysis process (Case I) 191
Figure 9.2 PFD 1 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production 192
Figure 9.2 PFD 2 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production 193
Figure 9.2 PFD 3 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production 194
Figure 9.2 PFD 4 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production 195