

Large-scale Pyrolysis— Plastic Chemical Recycling

PEP Report 199G

November 2021

Jonny Goyal
Director, Process Economics Program

Rajesh Verma
Director, Process Economics Program

Process Economics Program

Contacts

Jonny Goyal

Director, Process Economics Program

jonny.goyal@ihsmarkit.com

Rajesh Verma

Director, Process Economics Program

rajesh.verma@ihsmarkt.com

Michael Arné

Vice President, Process Economics Program

michael.arne@ihsmarkit.com

PEP Report 199G

Large-scale Pyrolysis—Plastic Chemical Recycling

Jonny Goyal, Director, Process Economics Program

Rajesh Verma, Director, Process Economics Program

Abstract

Plastic has become one of the most ubiquitous materials in our lifestyle. However, the proliferation of plastics that contaminate rivers, oceans, and landfills has also brought adverse environmental consequences. This is a major global challenge and has sparked a strong interest in the more efficient production, use, and disposal of plastics, in line with the principles of the circular economy. There is also increasing regulatory pressure regarding recycling quota and recyclability along with strong commitments from global chemical industries toward increasing the share of recycled material in their offerings. As the chemical makers are under pressure to solve the plastic waste problem, firms are increasingly exploring chemical recycling as a complement to traditional mechanical techniques, which reform the plastic into a usable pellet only. However, the capacity of plastic chemical recycling via pyrolysis is limited because the technology solution is at only 10–50 tpd of plant capacity. Large-scale pyrolysis is being investigated as an option so that a large volume of plastic waste can be handled.

This report is focused on chemical recycling of plastics, mainly polyolefins from mixed waste plastics, using large-scale pyrolysis in plants with capacity ranging from 300 to 2,000 tpd. The objective of this report is to evaluate the process economics of such large-sized plants. IHS Markit presents a comprehensive description of the technology aspects, shows the current worldwide industry status, and discusses the major risk factors related to technology implementation. We also explore the factors that will eventually decide the large scale and various options for upgrading pyrolysis oil for different scales of pyrolysis plants. The following cases are covered in this report:

- Case I: Brightmark's 317 tpd of plastic pyrolysis plant in Ashley, Indiana, United States
- Case II: A 1,000 tpd large-scale pyrolysis under various scenarios
- Case III: A 2,000 tpd large-scale pyrolysis under various scenarios, including the use of different specific feedstocks and associated yields

We have used the IHS Markit internal tools to work out a process design and its economics. We have addressed the issue of pyrolysis oil quality by implementing downstream hydrotreating and dewaxing units, as applicable, to develop capital investment estimates for the various process cases. The main challenges associated with the economics of large-scale plastic pyrolysis processes are ensuring feedstock quality, supply and price over the long term, choice of products and by-products, reactor size and catalyst, and tipping fee. Targeting high-market price products provides benefits where the economics can be met at medium-to-high-range pyrolysis plants with a tpd greater than 1,000. Feedstock quality plays a critical role and high feedstock price may need to be considered. On the other hand, large-scale pyrolysis plants with a 2,000 tpd capacity can potentially be economically viable, depending upon the conditions of the product market prices. It is difficult to predict if the industry will be going directly toward the implementation of a 2,000 tpd plant for chemical recycling because the technology is not yet mature. Most of the current pyrolysis players now use a modular approach of 10–

50 tpd. To bring it to an industrial scale, chemical recycling needs to strike a balance between economic viability, regulatory compliance, and environmental impact.

Contents

1	Introduction	10
2	Summary	12
	Three cases for comparison	12
	Brightmark's plastic pyrolysis process in Ashley, Indiana	13
	Brightmark's 1,000 tpd plastic pyrolysis conceptual design—Scale up	13
	A 2,000 tpd single-train mixed waste plastic pyrolysis plant	13
	Economic aspects	14
	Capital cost economics comparison	15
	Product cost economics comparison	16
	Carbon emissions summary	17
	Conclusions	18
	Some other important points	19
3	Industry status	21
	Plastic-to-oil companies, technology type, and status	21
	New Hope Energy/ Lummus Technology	31
	Brightmark (RES Polyflow)	31
	Mura-KBR/Licella's Cat-HTR (hydrothermal treatment process)	31
	Encina	31
	LyondellBasell	32
	Plastic Energy™/Cynar	33
	Agilyx	33
	Recycling Technologies	34
	Renewlogy (formerly PK Clean)	34
	Alterra Energy (formerly Vadxx Energy)	35
	Total/Synova/Technip Energies	35
	Nexus Fuels, LLC	36
4	Large-scale plastic pyrolysis technology review	37
	The issues with crude pyrolysis oil	45
	Upgrading pyrolysis oil	49
	Upgrading using catalytic cracking	49
	Upgrading using simple distillation or blending purpose	50
	Upgrading by hydrotreating and/or hydrocracking/hydroprocessing	51
	Dewaxing	56
	Other fuel finishing operations	58
	Fuel additives	58
	Commercial references for pyrolysis oil upgrading units	59
	Upgradation of pyrolysis oil for different scale pyrolysis	60
	Main factors defining the large-scale capacity for a plant	63
	Population density and the location of the plant	63
	Limitation on the upstream material recycling facility and its capacity	63
	Reactor size limitations (technology licensor's perspective)	64
	Deciding the end product beforehand (only as blending fuel, combined heat power fuel, or as monomer)	65
	Business model/possible solution/or the way forward	65
	Other factors and comparisons	66
	Sense of urgency and government regulations	66
5	Case I: Brightmark (RES Polyflow) pyrolysis process	68
	# Disclaimer	68
	Introduction	68
	Case assumptions	68
	Process description	71
	Section 100—Feed preparation	72
	Section 200—Plastic conversion and vapor condensation	72
	Section 300—Hydrotreating, fractionator, and fuel gas cleaning	73

Section 400—Dewaxing section	74
Process discussion	88
Brightmark process configuration and type	89
Description of reactor and equipment assembly	91
Plant capacity, feedstock composition, and flow rate	93
Brightmark process yield	93
Process fuel gas and solid char	94
Product quality of Brightmark process	94
Hydrotreater	95
Fractionator	96
Commercial-grade wax quality from the Brightmark process/dewaxing unit	96
Materials of construction	98
Emissions	98
Cost estimates	99
Fixed capital costs	100
Production costs	104
Sensitivity analysis and cost discussion	107
Conclusions	110
6 Case II: Brightmark 1,000 tpd plastic pyrolysis conceptual design—Scale up	111
Case introduction	111
Sensitivity analysis and cost discussion—Single-train 1,000 tpd Brightmark	113
Sensitivity analysis and cost discussion—Two trains, 500 tpd each (Brightmark)	118
Conclusions	121
7 Case III: IHS Markit conceptual design for a large-scale (2,000 tpd) waste plastic pyrolysis plant for liquid fuel production	122
Introduction	122
Process design basis	122
Storage facility	124
Material of construction	125
Process description	125
Pyrolysis feed preparation section (Section 100)	126
Pyrolysis reaction section (Section 200)	126
Pyro product hydrotreatment section (Section 300)	127
Pyro product fractionation section (Section 400)	128
Process discussion	142
Feedstock composition	142
Plant capacity and location	143
Feed pretreatment facility	143
Size reduction and sorting	143
Dehydrochlorination	144
Pyrolysis section	145
Pyrolysis reactor	145
Fluidizing medium	146
Pyrolysis operating conditions	147
Heating rate	147
Temperature	147
Particle size	148
Residence time	148
Pressure	148
Catalyst	149
Pyro oil quality	150
Pyro oil hydrotreatment	151
Operating conditions	151
Catalyst	151
Product fractionation	152
Emission and wastes	152
Cost estimates	152
Fixed capital costs	153
Production costs	153

8 Sensitivity analysis	161
Process economics for two trains, with 1,000 tpd capacity each, operating in parallel (Diesel_Case-1)	161
Process economics for eight trains, with 250 tpd capacity each, operating in parallel with common product purification and recovery sections (Diesel_Case-2)	162
Process economics for eight trains, with 250 tpd capacity each, operating in parallel with separate product purification and recovery sections (Diesel_Case-3)	163
Process economics for hydrotreated pyro oil (Base case)	164
Process economics for hydrotreated pyro oil (Case-4)	165
Process economics for hydrotreated pyro oil (Case-5)	166
Process economics for hydrotreated pyro oil (Case-6)	167
Process economics for hydrotreated pyro oil (Case-7)	168
Process economics for hydrotreated pyro oil (Case-8)	169
Process economics for hydrotreated pyro oil (Case-9)	170
Process economics for hydrotreated pyro oil (Case-10)	171
Appendix A—Cited references	177
Appendix B—Patents	185
Appendix C—Process flow diagrams	187

Tables

Table 2.1 Drivers for feasibility of plastic chemical recycling processes	12
Table 2.2 Overall comparison of different large-scale plastic pyrolysis process cases evaluated	14
Table 2.3 Overall comparison of capital investment and product cost	15
Table 3.1 Companies that recycle plastics via thermal way	23
Table 4.1 Typical operating parameters and products for pyrolysis process	37
Table 4.2 Typical heat requirements for pyrolysis of different plastics	38
Table 4.3 Main resin types in recycled plastic waste streams and their pyrolysis products	38
Table 4.4 Typical comparison of pyrolysis oil from different feedstocks versus conventional diesel oil	39
Table 4.5 Typical elemental analysis of different plastic waste	40
Table 4.6 Typical elemental analysis of pyrolysis oil produced from different plastics	41
Table 4.7 Summary of studies on different pyrolysis using different reactors and operating conditions	42
Table 4.8 Overview of different pyrolysis reactor types, their typical comparison for use for the pyrolysis process	43
Table 4.9 A typical gas composition after pyrolysis of different plastics	44
Table 4.10 Different plastic types listed by heteroatoms	45
Table 4.11 An estimation of the levels of contaminants present in crude oil and postconsumer plastics	45
Table 4.12 Purification and upgrading of pyrolysis liquid oils	46
Table 4.13 Typical pyrolysis oil composition from the pyrolysis of different plastics	47
Table 4.14 Properties of conventional crude oils	48
Table 4.15 Typical crude oil assays for the different specifications and comparison	49
Table 4.16 Effect of catalytic cracking on the quality of different plastic pyrolysis oils	50
Table 4.17 Conventional hydrotreating and hydrocracking ranges of H ₂ partial pressure and conversion	54
Table 4.18 Typical operating parameters used for hydroprocessing of plastic pyrolysis oil	54
Table 4.19 Different properties of MEK and toluene as a solvent for dewaxing process	57
Table 4.20 Impact of dewaxing solvent composition on dewaxing process operating conditions	58
Table 4.21 Some of the licensors for upgrading pyrolysis oil from plastics	60
Table 5.1 Brightmark pyrolysis process for plastic recycling (Case I)—Basis of design	70
Table 5.2 Unit material balance and key performance parameters	75
Table 5.3 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input) for Case-1—Material stream flows (in lbs/hr)	76
Table 5.4 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input) for Case-1—Major equipment	84
Table 5.5 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input) for Case-1—Utility summary	
Table 5.6 Reference of commercial vessel volume from US 20170283706A1 (Table 5)	92
Table 5.7 Feed mixture composition, wt% (as adopted from Table 1 in US 20170283706A1)	93
Table 5.8 Pyrolysis oil from Brightmark process—ASTM distillation data from US 20170283706A1 (Table 5)	95

Table 5.9 Fully refined paraffin wax 52/54 properties (as obtained from vendor website)	97
Table 5.10 Brightmark pyrolysis process—Net CO ₂ emission	99
Table 5.11 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case-1	101
Total capital investment	101
Table 5.12 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1	102
Total capital investment by section	102
Table 5.13 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1	105
Production cost	105
Table 5.14 Sensitivity analysis—Impact of wax price on net production cost and product value	107
Table 5.15 Sensitivity analysis—Impact of feedstock price on net production cost and product value	109
Table 6.1 Brightmark 1,000 tpd plastic pyrolysis conceptual design—Single train (Scenario 1)	113
Table 6.2 Sensitivity analysis—Impact of wax price on net production cost and product value	114
Table 6.3 Sensitivity analysis—Impact of feedstock price on net production cost and product value	115
Table 6.4 Brightmark 1,000 tpd plastic pyrolysis conceptual design—Two trains 500 tpd each (Scenario 2)	118
Table 6.5 Sensitivity analysis—Impact of wax price on net production cost and product value	119
Table 6.6 Sensitivity analysis—Impact of feedstock price on net production cost and product value	120
Table 7.1 IHS Markit conceptual design for large-scale waste plastic pyrolysis to liquid fuel—Design bases and assumptions	123
Table 7.2 Unit material balance and key performance parameters	129
Table 7.3 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Major streams flow	130
Table 7.4 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Major equipment	138
Table 7.5 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Utility summary	142
Table 7.6 Waste plastic feedstock composition	143
Table 7.7 Some industrial facilities for plastic pyrolysis (thermal and catalytic process)	150
Table 7.8 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Total capital investment	154
Table 7.9 IHS Markit conceptual design for large-scale waste plastic pyrolysis to liquid fuel—Capital investment by section	Error! Bookmark not defined.
Table 7.10 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Variable costs	157
Table 7.11 IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production—Production costs	158
Table 8.1 Large-scale waste plastic pyrolysis plant for liquid fuel production with two trains operating in parallel—Production costs	162
Table 8.2 Large-scale waste plastic pyrolysis plant for liquid fuel production with eight trains operating in parallel with common product purification and recovery section—Production costs	163
Table 8.3 Large-scale waste plastic pyrolysis plant for liquid fuel production with eight trains operating in parallel with separate product purification and recovery sections—Production costs	164
Table 8.4 Large-scale waste plastic pyrolysis plant for hydrotreated Pyro Oil production (Base case)—Production costs	165
Table 8.5 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-1)—Production costs	166
Table 8.6 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-2)—Production costs	167
Table 8.7 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-3)—Production costs	168
Table 8.8 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-4)—Production costs	169
Table 8.9 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-5)—Production costs	170
Table 8.10 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-6)—Production costs	171
Table 8.11 Large-scale waste plastic pyrolysis plant for hydrotreated pyro oil production (Case-7)—Production costs	172

Figures

Figure 2.1 Capital cost comparison	16
Figure 2.2 Production cost comparison	17
Figure 3.1 KIT fast pyrolysis process scheme	32
Figure 3.2 Typical representation of Plastic Energy/Cynar Plastic recycling process	33
Figure 3.3 Agilyx technology supplied to GenAgain—Process flow diagram	34
Figure 3.4 Process flow scheme—Nexus Fuel plastic pyrolysis process	36
Figure 4.1 Typical scheme of single-stage hydrotreater	54
Figure 4.2 Typical scheme of single-stage hydrotreater	55
Figure 4.3 Simplified flow diagram of a dewaxing plant	57
Figure 4.4 Pyrolysis oil upgrading (Option 1)	61
Figure 4.5 Pyrolysis oil upgrading (Option 2)	62
Figure 4.6 Pyrolysis oil upgrading (Option 3)	62
Figure 4.7 Positioning MRF for plastic chemical recycling of large-scale plants	64
Figure 5.1 Basic set-up of trains for Brightmark's plastic pyrolysis process	90
Figure 5.2 A typical arrangement of Brightmark's pyrolysis process equipment configuration	91
Figure 5.3 Brightmark (RES Polyflow) pyrolyzer reactor system arrangement (US 20170283706A1)	92
Figure 5.4 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1	104
Effect of plant capacity on investment cost	104
Figure 5.5 Brightmark plastic pyrolysis process (317.5 tpd of waste plastic input)—Case 1	107
Effect of plant operating level on net production cost	107
Figure 5.6 Sensitivity analysis—Impact of wax price on net production cost and product value	108
Figure 5.7 Sensitivity analysis—Impact of feedstock price on net production cost and product value	109
Figure 6.1 Preliminary scheme for a 1,000 tpd plastic pyrolysis with single train (Scenario 1)	112
Figure 6.2 Sensitivity analysis—Impact of wax price on net production cost and product value	114
Figure 6.3 Sensitivity analysis—Impact of feedstock price on net production cost and product value	116
Figure 6.4 Preliminary scheme for 1,000 tpd plastic pyrolysis with two trains (scenario 2)	117
Figure 6.5 Sensitivity analysis—Impact of wax price on net production cost and product value	119
Figure 6.6 Sensitivity analysis—Impact of feedstock price on net production cost and product value	121
Figure 7.1 Effect of plant capacity on investment costs	159
Figure 7.2 Effect of waste plastic feed price on net production cost and product value	159
Figure 7.3 Effect of light oil by-product price on net production cost and product value	160
Figure 7.4 Effect of plant operating level on net production cost	160
Figure 8.1 Capital cost comparison for diesel production	172
Figure 8.2 Comparison of production costs for diesel production	173
Figure 8.3 Capital cost comparison for pyro oil production	174
Figure 8.4 Production costs comparison for pyro oil production	175
Figure 8.5 Effect of paraffin wax by-product price on pyro oil net production cost and product value (Case-5)	176

Appendix C Figures

Figure 9.1 PFD 1 of 4: Brightmark plastic pyrolysis process (Case I)	188
Figure 9.1 PFD 2 of 4: Brightmark plastic pyrolysis process (Case I)	189
Figure 9.1 PFD 3 of 4: Brightmark plastic pyrolysis process (Case I)	190
Figure 9.1 PFD 4 of 4: Brightmark plastic pyrolysis process (Case I)	191
Figure 9.2 PFD 1 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production	192
Figure 9.2 PFD 2 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production	193
Figure 9.2 PFD 3 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production	194
Figure 9.2 PFD 4 of 4: IHS Markit conceptual design for a large-scale waste plastic pyrolysis plant for liquid fuel production	195

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com

Asia and the Pacific Rim

Japan: +813 6262 1887

Asia Pacific: +604 291 3600

Europe, Middle East, and Africa: +44 1344 328 300

Americas: +1 800 447 2273

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.