

Biodegradable Polymers

PEP Report 115E November 2022

Contacts

Susan L. Bell

Director of Polymer Processes Susan.Bell@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program Michael.Arne@ihsmarkit.com

PEP Report 115E

Biodegradable Polymers

Susan L. Bell, Director of Polymer Processes

Abstract

Biodegradable polymers are typically designed to degrade to carbon dioxide (CO₂) and water through the action of living organisms in industrial composting facilities. Global consumption of biodegradable polymers has risen sharply in the past few years, driven by regulations that aim to reduce plastic waste and by the increased public awareness of environmental issues regarding plastic waste. Demand is expected to increase from nearly 854,000 metric tons in 2020 to 3 million metric tons in 2025. Major biodegradable polymers include starch compounds, making up 62% of biodegradable polymers, and polylactic acid (PLA) and PLA compounds accounting for up to 33% of the demand. The remaining biodegradable polymers include polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), and polyhydroxyalkanoate (PHA).

Eliminating single-use plastics (SUPs) has been identified as a priority for reducing environmental pollution by plastics. In mainland China, new regulations banning nondegradable plastic bags and SUP utensils, including nondegradable plastic straws, began to be implemented on 1 January 2021 in phases. By 2022, nondegradable plastics bags and SUP utensils will be banned in shopping malls, supermarkets, and food takeout services in most other cities and towns in mainland China. By 2025, the ban will be extended nationwide to cover plastic postal and courier packaging bags. These new regulations have spurred many new projects for biodegradable polymers in mainland China. Several high-capacity biodegradable projects have been announced. These include Kanghui Dalian New Materials' (a subsidiary of Hengli Petrochemical) 450,000 metric tons PBS project and Inner Mongolia Junzheng Energy & Chemical Group's 1 million metric tons per year (MMt/y) PBAT/PBS/PBT/PTMEG project. PBAT capacity in mainland China was about 304,000 metric tons in 2020, but may skyrocket in a few years and reach 2.5 million metric tons (based on a recent *China Chemical Reporter* article).

This report presents an update on the commercial status, new developments, and trends in biodegradable polymers and will provide process economics for three biodegradable polymers: PBAT, starch-based polymer, and polybutylene succinate adipate (PBSA).

Contents

1 2	Introduction Summary	8 10
	Introduction	10
	Industrial aspects	10
	Technical aspects	11
	Polybutylene adipate terephthalate	11
	Starch-based polymers	12
	Polybutylene succinate adipate	13
	Economic aspects	14
	Conclusion	15
3	Industry status	17
	Introduction	17
	Solid waste disposal pattern	17
	Legislations and regulations	20
	Canada	20
	United States	20
	Western Europe	20
	Japan	21
	Mainland China	21
	India	22
	Middle East	22
	Commercial status of select biodegradable polymers	22
	Polybutylene adipate terephthalate	22
	Production plants	22
	Technology licensing	25
	PBAT products	25
	PBAT value chain	26
	Polybutylene succinate and polybutylene succinate adipate	27
_	Starch compounds	28
4	Technology	29
	Introduction	29
	Definitions	29
	Bio-based plastics	29
	Biodegradation and biodegradable plastics	29
	Bioplastics	29
	Compostable plastics	30
	Degradable plastics	30
	Hydro-degradable plastics	30
	Oxo-degradable plastics	30
	Photo-degradable plastics	31
	Composing process	31
	Home or backyard composing	31
	Confinencial or industrial composting	31
	Venuned compositable plastics	32
	Riodogradable polymore	33 22
	Comparison of biodegradable polymers	33
	Cellulose acetate	33 24
	Delluluse adelale Polyhutylene adinate terentithalate	04 25
	r orypatyrone adipate tereprinalate	

	General	35
	Production processes	38
	Polybutylene succinate	47
	Polybutylene succinate adipate	48
	Polycaprolactone	49
	Polyglycolic acid	49
	Polyhydroxyalkanoates	50
	Polylactic acid	51
	Polypropylene carbonate	52
	Starch-based polymers	53
	Natural starch	53
	Thermoplastic starch	54
	Chemical modifications of starch	58
	Starch blends with other polymers	59
	TPS blends with additives/fillers	62
_	Advanced development in starch-based materials	62
5	PBAT production process	64
	Introduction	64
	Process description	64
	Section 100—Esterification section	(2
	Section 200—Polycondensation section	(2
	Section 300—THF recovery and purification section	72
	Process discussion	73
	Plant design capacity	73
		13
		74
		74
	THE recovery and purification	75
	Viald	75
	Tielu Dreduet	70
	Material of construction	70
	Environmental	70
		70
	Capital costs	77
	Production costs	81
	Sensitivity analysis	83
6	Starch-based polymer production	85
v	Introduction	85
	Process description	85
	Process discussion	88
	Plant design capacity	88
	Feedstock	88
	Product	88
	Equipment	88
	Material of construction	88
	Environmental	89
	Cost estimate	89
	Capital costs	89
	Production costs for TPS pellets	92
	Production costs for TPS/polymer blends	93
7	PBSA production process	95
	Introduction	95
	Process description	95

Section 100—Esterification section	103
Section 200—Polycondensation section	103
Section 300—THF recovery and purification section	104
Process discussion	104
Plant design capacity	104
Feedstock	104
Polymerization	105
Vacuum system	106
THF recovery and purification	106
Yield	107
Material of construction	107
Environmental	107
Cost estimate	108
Capital costs	108
Production costs	113
Bio-based PBSA	114
Appendix A—Patents	115
Appendix B—Design and cost basis	123
Appendix C—Cited references	129
Appendix D—Process flow diagrams	145

Tables

Table 2.1 Capital investment estimate	14
Table 2.2 Production costs	15
Table 3.1 PBAT/PBS/PBSA production existing capacity	23
Table 3.2 PBAT/PBS/PBSA production capacity, under construction and proposed	24
Table 3.2 PBAT/PBS/PBSA production capacity, under construction and proposed (continued)	25
Table 3.3 Commercial PBAT products	26
Table 3.4 Commercial starch products	28
Table 4.1 Properties of different polymers	34
Table 4.2 Properties of PBAT and film-grade LDPE	36
Table 4.3 Barrier properties of PGA and other plastics	50
Table 4.4 Commercial PHAs	51
Table 4.5 Relative amounts of amylose and amylopectin in various starches	53
Table 4.6 Properties of NuPlastiQ [®] TPS	57
Table 5.1 PBAT production process—Design bases	65
Table 5.2 PBAT production process—Major stream flows	66
Table 5.3 PBAT production process—Major equipment	68
Table 5.4 PBAT production process—Utilities summary	71
Table 5.5 Typical properties of PTA	73
Table 5.6 Typical properties of adipic acid	74
Table 5.7 Typical properties of 1,4-butanediol	74
Table 5.8 PBAT specification	76
Table 5.9 Summary of major waste streams	76
Table 5.10 Carbon dioxide emissions	77
Table 5.11 PBAT production process—Total capital investment	80
Table 5.12 PBAT production process—Capital investment by section	81
Table 5.13 PBAT production process—Production costs	82
Table 6.1 TPS production—Design bases	86
Table 6.2 TPS production—Major stream flows	86

3

Table 6.3 TPS production—Major equipment	87
Table 6.4 TPS production—Utilities summary	88
Table 6.5 Carbon dioxide emission	89
Table 6.6 TPS production—Total capital investment	91
Table 6.7 TPS production—Production costs	92
Table 6.8 Production of TPS/PBAT/PLA polymer blend—Production costs	94
Table 7.1 PBSA production process—Design bases	96
Table 7.2 PBSA production process—Major stream flows	97
Table 7.3 PBSA production process—Major equipment	99
Table 7.4 PBSA production process—Utilities summary	103
Table 7.5 Typical properties of succinic acid	105
Table 7.6 Typical properties of adipic acid	105
Table 7.7 Typical properties of 1,4-butanediol	105
Table 7.8 Summary of major waste streams	107
Table 7.9 Carbon dioxide emission	108
Table 7.10 PBSA production process—Total capital investment	111
Table 7.11 PBSA production process—Capital investment by section	112
Table 7.12 PBSA production process—Production costs	113

Figures

Figure 2.1 Classification of different biodegradable polymers	11
Figure 2.2 Chemical structure of PBAT	12
Figure 2.3 Simplified block diagram of PBAT production	12
Figure 2.4 Simplified block diagram of TPS and TPS/polymer blends production	13
Figure 2.5 Simplified block diagram of PBSA production	14
Figure 2.6 Production costs of biodegradable polymers and conventional polymers	16
Figure 3.1 Composition of MSW in the United States—2018	18
Figure 3.2 Disposition of MSW in the United States—2018	18
Figure 3.3 Disposition of plastic wastes in the United States—2018	19
Figure 3.4 Disposition of MSW in the European Union—2018	19
Figure 3.5 PBAT value chain	27
Figure 4.1 Structure of cellulose acetate	35
Figure 4.2 Chemical structure of PBAT	36
Figure 4.3 PBAT reaction steps using DMT	39
Figure 4.4 Direct esterification methods for PBAT production	40
Figure 4.5 PBAT reaction steps using PTA	41
Figure 4.6 Uhde Inventa Fischer's ESPREE [®] reactor	42
Figure 4.7 Uhde Inventa Fischer's DISCAGE [®] reactor	43
Figure 4.8 THF production	43
Figure 4.9 Techniq Zimmer's esterification reactor	45
Figure 4.10 Chemical structure of PBS	47
Figure 4.11 Chemical structure of PBSA	49
Figure 4.12 Chemical structure of PCL	49
Figure 4.13 Chemical structure of PGA	50
Figure 4.14 Basic structure of PHA	51
Figure 4.15 PLA synthesis	52
Figure 4.16 Basic structure of PPC	53
Figure 4.17 Structure of α-amylose and amylopectin	54
Figure 5.1 Simplified block diagram of PBAT production	64
Figure 5.3 Effect of plant production capacity on PBAT production cost and value	84
Figure 6.1 Simplified block diagram of TPS and TPS/polymer blends production	85
Figure 7.1 Simplified block diagram of PBSA production	95

Appendix D Process Flow Diagrams

Figure 5.2 (Sheet 1 of 4) Production of PBAT by a continuous process	137
Figure 5.2 (Sheet 2 of 4) Production of PBAT by a continuous process	138
Figure 5.2 (Sheet 3 of 4) Production of PBAT by a continuous process	139
Figure 5.2 (Sheet 4 of 4) Production of PBAT by a continuous process	140
Figure 6.2 TPS production process	141
Figure 7.2 (Sheet 1 of 4) Production of PBSA by a continuous process	142
Figure 7.2 (Sheet 2 of 4) Production of PBSA by a continuous process	143
Figure 7.2 (Sheet 3 of 4) Production of PBSA by a continuous process	144
Figure 7.2 (Sheet 4 of 4) Production of PBSA by a continuous process	145

Customer Care CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +81 3 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer
The information contained in this report is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by
any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos
and trade names contained in this report that are subject to license. Opinions, statement, estimates, and projections in this report (including other media) are
solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has
any obligation to update this report in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or
subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in
this report, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no
liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or
damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party,
whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit and hor the understood to be an
endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external
websites. Copyright © 2022, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

