Gaseous and Solid Waste Treatment Cost Estimation

PEP Report 145D
December 2019

PD Pavlechko
Principle Analyst

R Smith
Research and Analysis Associate Director

Process Economics Program
Abstract

Waste produced in chemical processes is a growing concern for the chemical process industry. In general, the industry was slow to comprehend the issue of waste treatment in the early years of industrialization, which tended to spawn processes with limited regard for waste products, and weak understanding of long term consequences. As the implications for waste generation and accumulation grew, environmental concerns began to pressure the industry for better treatment systems and disposal problems. The growing pressure and regulation push the industry to minimize wastes and improve treatment methods. Ideally, zero discharge is the ultimate target, but most processes cannot live up to that goal. Until such time, as all processes have been improved to eliminate all wastes, waste treatment will remain a required segment of the industry.

Gas, liquid, solid, and water waste streams each have different treatment methods. PEP Report 295 (December 2016) reviewed the methods for wastewater treatment, and treatment techniques for solid sludges resulting from the wastewater treatment systems. This report addresses similar methods for gaseous wastes and non-wastewater based solid wastes. Liquid wastes other than wastewater may be treated by some of the same methods evaluated in this report or PEP Report 295, with minimal adaptation.

Gaseous waste treatment methods include absorption, adsorption, dust collection, chemical reaction, combustion, and physical property adjustment. Absorption methods involve solvent scrubbers, water scrubbers, and venturi scrubbers to capture components of a gas stream by a liquid. Adsorption methods cover selective capture of gas stream components on a bed of solid particles. Dust collection separates particulate dust entrained in a gas stream using fabric filters, cyclones, or electrostatic precipitators. Chemical reaction alters other methods to enhance the intended behavior of a technique by chemically altering the substances in the stream, like caustic scrubbers to absorb acid gases. Combustion systems destroy components in a gas stream to ash and slag for mineral content and carbon dioxide and steam for organic species. Physical property adjustment involves unit operations to change temperature and pressure of the gas, generally for subsequent treatment.

Treatment methods for solid waste streams include physical separation for storage, conversion, or destruction. Separations include screening, gravity settling, flotation, filtration, and centrifugation. Precipitation and crystallization form the solids to be separated, which may be supplemented by chemical reaction. The nature of the solid waste components determines the type and configuration of the treatment methods, which may be inorganic salts, insoluble organics, sludges, or tars. Destruction methods involve incineration of the waste. PEP Report 295 already covered centrifuges, dryers, microfiltration, and ultrafiltration separation techniques for wastewater sludge; however, each method is adaptable to general solid waste materials. Circulating bed combustion and fluidized bed incineration were also previously evaluated for wastewater sludge destruction, but they are also adaptable to general solid waste treatment.
This report reviews 29 gaseous waste treatment methods and 10 solid waste treatment systems. The solid treatment chapter also discusses adapting 6 of the evaluations from PEP Report 295 to evaluate the routes for a wider array of solids. Each of the methods have been revised and updated to supply incremental cost contributions of individual waste treatment systems, such that they can be used to incorporate an estimate of waste treatment for a process as part of the conceptual design and economic evaluation.
Contents

1 Introduction 10
2 Summary 11
 Industry 11
 Technology 11
 Gaseous waste treatment 11
 Solid waste treatment 11
 Liquid waste treatment 12
 Economics 12
3 Industry status 13
 Gaseous waste 14
 Solid waste 14
4 Technology 15
 Gaseous waste treatment 15
 Solid waste treatment 16
 Liquid waste treatment 17
 Wastewater treatment 17
 Liquid chemical waste treatment 17
5 Process discussion 19
 Acid gas neutralization 20
 Application 20
 Process description 20
 Economics of acid gas neutralization with caustic 21
 Economics of acid gas neutralization with lime 22
 Activated carbon adsorber 24
 Application 24
 Process description 24
 Economics 25
 Direct spray gas cooler 27
 Application 27
 Process description 27
 Economics 28
 Dust separator, bag filter/baghouse 30
 Application 30
 Process description 30
 Economics 31
 Dust separator, cyclone 33
 Application 33
 Process description 33
 Economics 34
 Dust separator, electrostatic precipitator 36
 Application 36
 Process description 36
 Economics 37
 Flue gas desulfurization, citrate scrubbing 39
 Application 39
 Process description 39
 Economics 41
 Flue gas desulfurization, double alkali scrubbing 43
 Application 43
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process description</td>
<td>43</td>
</tr>
<tr>
<td>Economics</td>
<td>44</td>
</tr>
<tr>
<td>Flue gas desulfurization, limestone/lime scrubbing</td>
<td>47</td>
</tr>
<tr>
<td>Application</td>
<td>47</td>
</tr>
<tr>
<td>Process description</td>
<td>47</td>
</tr>
<tr>
<td>Economics of flue gas desulfurization with limestone scrubbing</td>
<td>48</td>
</tr>
<tr>
<td>Economics of flue gas desulfurization with lime scrubbing</td>
<td>51</td>
</tr>
<tr>
<td>Flue gas desulfurization, Wellman-Lord scrubbing</td>
<td>53</td>
</tr>
<tr>
<td>Application</td>
<td>53</td>
</tr>
<tr>
<td>Process description</td>
<td>54</td>
</tr>
<tr>
<td>Economics</td>
<td>55</td>
</tr>
<tr>
<td>Gas combuster for steam generation</td>
<td>57</td>
</tr>
<tr>
<td>Application</td>
<td>57</td>
</tr>
<tr>
<td>Process description</td>
<td>57</td>
</tr>
<tr>
<td>Economics</td>
<td>58</td>
</tr>
<tr>
<td>Gas compression</td>
<td>60</td>
</tr>
<tr>
<td>Application</td>
<td>60</td>
</tr>
<tr>
<td>Equipment description</td>
<td>60</td>
</tr>
<tr>
<td>Economics</td>
<td>61</td>
</tr>
<tr>
<td>Gas cooling</td>
<td>63</td>
</tr>
<tr>
<td>Application</td>
<td>63</td>
</tr>
<tr>
<td>Equipment description</td>
<td>63</td>
</tr>
<tr>
<td>Economics</td>
<td>64</td>
</tr>
<tr>
<td>Gas chilling</td>
<td>66</td>
</tr>
<tr>
<td>Application</td>
<td>66</td>
</tr>
<tr>
<td>Process description</td>
<td>66</td>
</tr>
<tr>
<td>Economics</td>
<td>67</td>
</tr>
<tr>
<td>Gas dispersion stack</td>
<td>69</td>
</tr>
<tr>
<td>Application</td>
<td>69</td>
</tr>
<tr>
<td>Design guidelines</td>
<td>69</td>
</tr>
<tr>
<td>Economics</td>
<td>70</td>
</tr>
<tr>
<td>Gas flare, steam assisted</td>
<td>72</td>
</tr>
<tr>
<td>Application</td>
<td>72</td>
</tr>
<tr>
<td>Process description</td>
<td>72</td>
</tr>
<tr>
<td>Economics</td>
<td>73</td>
</tr>
<tr>
<td>Gas scrubber</td>
<td>75</td>
</tr>
<tr>
<td>Application</td>
<td>75</td>
</tr>
<tr>
<td>Process description</td>
<td>75</td>
</tr>
<tr>
<td>Economics of a solvent gas scrubber</td>
<td>76</td>
</tr>
<tr>
<td>Economics of a water gas scrubber</td>
<td>77</td>
</tr>
<tr>
<td>NOx control by chemical treatment, extended absorption</td>
<td>79</td>
</tr>
<tr>
<td>Application</td>
<td>79</td>
</tr>
<tr>
<td>Process description</td>
<td>79</td>
</tr>
<tr>
<td>Economics</td>
<td>80</td>
</tr>
<tr>
<td>NOx control by chemical treatment, Exxon thermal DeNOx process</td>
<td>82</td>
</tr>
<tr>
<td>Application</td>
<td>82</td>
</tr>
<tr>
<td>Process description</td>
<td>82</td>
</tr>
<tr>
<td>Economics</td>
<td>83</td>
</tr>
<tr>
<td>NOx control by chemical treatment, KHI SCR process</td>
<td>85</td>
</tr>
<tr>
<td>Application</td>
<td>85</td>
</tr>
<tr>
<td>Process description</td>
<td>85</td>
</tr>
<tr>
<td>Economics</td>
<td>86</td>
</tr>
<tr>
<td>NOx control by combustion modification</td>
<td>88</td>
</tr>
<tr>
<td>Application</td>
<td>88</td>
</tr>
</tbody>
</table>
Process description 89
Economics of NOx control by combustion modification for high sulfur coal 90
Economics of NOx control by combustion modification for low sulfur coal 92
Economics of NOx control by combustion modification for residual oil 94
Vapor incineration, catalytic
Application 96
Process description 96
Economics 97
Vapor incineration, thermal recuperative
Application 99
Process description 99
Economics 100
Venturi scrubber
Application 102
Process description 102
Economics 103

6 **Solid waste treatment processes** 105
Chromate precipitation
Application 106
Process description 106
Economics 107
Chromate recovery
Application 109
Process description 109
Economics 110
Filters
Application 112
Process description 112
Economics 113
Economics of a tilting pan filter 113
Economics of a rotary drum filter 116
Economics of a rotary disk filter 118
Economics of a traveling screen filter 120
Economics of a vibrating hydrosieve filter 122
Economics of a plate and frame filter 124
Gypsum stacking
Application 126
Process description 126
Economics 127
Rotary kiln incineration
Application 129
Process description 129
Economics 130
Solid separations
Coarse particle centrifuges 132
Fine particle centrifuges 132
Rotary direct dryers 132
Microfiltration and ultrafiltration 132
Solids incineration
Circulating bed combustion 133
Fluidized bed incineration 133
Tables

Table 2.1 Waste treatment processes
Table 5.1 Acid gas neutralization with caustic—design bases
Table 5.2 Acid gas neutralization with caustic—variable costs
Table 5.3 Acid gas neutralization with caustic—production costs
Table 5.4 Acid gas neutralization with lime—design bases
Table 5.5 Acid gas neutralization with lime—variable costs
Table 5.6 Acid gas neutralization with lime—production costs
Table 5.7 Activated carbon adsorber—design bases
Table 5.8 Activated carbon adsorber—variable costs
Table 5.9 Activated carbon adsorber—production costs
Table 5.10 Direct spray gas cooler—design bases
Table 5.11 Direct spray gas cooler—variable costs
Table 5.12 Direct spray gas cooler—production costs
Table 5.13 Dust separator, bag filter/baghose—design bases
Table 5.14 Dust separator, bag filter/baghose—variable costs
Table 5.15 Dust separator, bag filter/baghose—production costs
Table 5.16 Dust separator, cyclone—design bases
Table 5.17 Dust separator, cyclone—variable costs
Table 5.18 Dust separator, cyclone—production costs
Table 5.19 Dust separator, electrostatic precipitator—design bases
Table 5.20 Dust separator, electrostatic precipitator—variable costs
Table 5.21 Dust separator, electrostatic precipitator—production costs
Table 5.22 Flue gas desulfurization—citrate scrubbing—design bases
Table 5.23 Flue gas desulfurization—citrate scrubbing—variable costs
Table 5.24 Flue gas desulfurization—citrate scrubbing—production costs
Table 5.25 Flue gas desulfurization—double alkali scrubbing—design bases
Table 5.26 Flue gas desulfurization—double alkali scrubbing—variable costs
Table 5.27 Flue gas desulfurization—double alkali scrubbing—production costs
Table 5.28 Flue gas desulfurization—limestone scrubbing—design bases
Table 5.29 Flue gas desulfurization—limestone scrubbing—variable costs
Table 5.30 Flue gas desulfurization—limestone scrubbing—production costs
Table 5.31 Flue gas desulfurization—lime scrubbing—design bases
Table 5.32 Flue gas desulfurization—lime scrubbing—variable costs
Table 5.33 Flue gas desulfurization—lime scrubbing—production costs
Table 5.34 Flue gas desulfurization—Wellman-Lord scrubbing—design bases
Table 5.35 Flue gas desulfurization—Wellman-Lord scrubbing—variable costs
Table 5.36 Flue gas desulfurization—Wellman-Lord scrubbing—production costs
Table 5.37 Gas combustor for steam generation—design bases
Table 5.38 Gas combustor for steam generation—variable costs
Table 5.39 Gas combustor for steam generation—production costs
Table 5.40 Gas compression—design bases
Table 5.41 Gas compression—variable costs
Table 5.42 Gas compression—production costs
Table 5.43 Gas cooling—design bases
Table 5.44 Gas cooling—variable costs
Table 5.45 Gas cooling—production costs
Table 5.46 Gas chilling—design bases
Table 5.47 Gas chilling—variable costs
Table 5.48 Gas chilling—production costs
Table 5.49 Gas dispersion stack—design bases
Table 5.50 Gas dispersion stack—variable costs
Table 5.51 Gas dispersion stack—production costs
Table 5.52 Gas flare, steam assisted—design bases
Table 5.53 Gas flare, steam assisted—variable costs
Table 6.21 Filter, vibrating hydrosieve
Table 6.20 Filter, vibrating hydrosieve
Table 6.19 Filter, traveling screen
Table 6.18 Filter, traveling screen
Table 6.17 Filter, rotary vacuum disk
Table 6.16 Filter, rotary vacuum drum
Table 6.15 Filter, rotary vacuum disk
Table 6.14 Filter, rotary vacuum drum
Table 6.13 Filter, water—design bases
Table 6.12 Filter, water—variable costs
Table 6.11 Filter, traveling screen
Table 6.10 Filter, vibrating hydrosieve
Table 6.9 Filter, vibrating hydrosieve
Table 6.8 Filter, tilting pan
Table 6.7 Filters
Table 6.6 Chromate recovery
Table 6.5 Chromate recovery
Table 6.4 Chromate precipitation
Table 6.3 Chromate precipitation
Table 6.2 Chromate precipitation
Table 6.1 Chromate precipitation
Table 5.89 Venturi scrubber
Table 5.88 Venturi scrubber
Table 5.87 Venturi scrubber
Table 5.86 Vapor in
Table 5.85 Vapor incineration, thermal recuperative
Table 5.84 Vapor incineration, catalytic
Table 5.83 NOx control by chemical treatment, KHI SCR process—variable costs
Table 5.82 NOx control by chemical treatment, KHI SCR process—production costs
Table 5.81 Vapor incineration, catalytic—design bases
Table 5.80 NOx control by chemical treatment, Exxon thermal DeNOx process—variable costs
Table 5.79 NOx control by chemical treatment, Exxon thermal DeNOx process—production costs
Table 5.78 NOx control by chemical treatment, high sulfur coal—design bases
Table 5.77 NOx control by chemical treatment, high sulfur coal—variable costs
Table 5.76 NOx control by chemical treatment, low sulfur coal—design bases
Table 5.75 NOx control by chemical treatment, low sulfur coal—variable costs
Table 5.74 NOx control by chemical treatment, high sulfur coal—production costs
Table 5.73 NOx control by chemical treatment, high sulfur coal—production costs
Table 5.72 NOx control by chemical treatment, low sulfur coal—production costs
Table 5.71 NOx control by chemical modification—emissions inventory
Table 5.70 NOx control by combustion modification—NOx reduction %
Table 5.69 NOx control by chemical treatment, KHI SCR process—production costs
Table 5.68 NOx control by chemical treatment, KHI SCR process—variable costs
Table 5.67 NOx control by chemical treatment, KHI SCR process—design bases
Table 5.66 NOx control by chemical treatment, residual oil
Table 5.65 NOx control by chemical treatment, Exxon thermal DeNOx process—design bases
Table 5.64 NOx control by chemical treatment, residual oil
Table 5.63 NOx control by chemical treatment, low sulfur coal
Table 5.62 NOx control by chemical treatment, high sulfur coal
Table 5.61 NOx control by chemical treatment, extended scrubbing—design bases
Table 5.60 NOx control by chemical treatment, extended scrubbing—variable costs
Table 5.59 NOx control by chemical treatment, extended scrubbing—production costs
Table 5.58 NOx control by chemical treatment, catalytic
Table 5.57 NOx control by chemical treatment, catalytic
Table 5.56 NOx control by chemical treatment, Exxon thermal DeNOx process
Table 5.55 NOx control by chemical treatment, Exxon thermal DeNOx process
Table 5.54 NOx control by chemical treatment, Exxon thermal DeNOx process
Table 5.53 NOx control by chemical treatment, residual oil
Table 5.52 NOx control by chemical treatment, low sulfur coal
Table 5.51 NOx control by chemical treatment, high sulfur coal
Table 5.50 NOx control by chemical treatment, low sulfur coal
Table 5.49 NOx control by chemical treatment, high sulfur coal
Table 5.48 NOx control by chemical treatment, residual oil
Table 5.47 NOx control by chemical treatment, low sulfur coal
Table 5.46 NOx control by chemical treatment, high sulfur coal
Table 5.45 NOx control by chemical treatment, low sulfur coal
Table 5.44 NOx control by chemical treatment, residual oil
Table 5.43 NOx control by chemical treatment, residual oil
Table 5.42 NOx control by chemical treatment, low sulfur coal
Table 5.41 NOx control by chemical treatment, residual oil
Table 5.40 NOx control by chemical treatment, residual oil
Table 5.39 NOx control by chemical treatment, low sulfur coal
Table 5.38 NOx control by chemical treatment, residual oil
Table 5.37 NOx control by chemical treatment, residual oil
Table 5.36 NOx control by chemical treatment, residual oil
Table 5.35 NOx control by chemical treatment, low sulfur coal
Table 5.34 NOx control by chemical treatment, residual oil
Table 5.33 NOx control by chemical treatment, low sulfur coal
Table 5.32 NOx control by chemical treatment, residual oil
Table 5.31 NOx control by chemical treatment, low sulfur coal
Table 5.30 NOx control by chemical treatment, residual oil
Table 5.29 NOx control by chemical treatment, residual oil
Table 5.28 NOx control by chemical treatment, low sulfur coal
Table 5.27 NOx control by chemical treatment, residual oil
Table 5.26 NOx control by chemical treatment, residual oil
Table 5.25 NOx control by chemical treatment, residual oil
Table 5.24 NOx control by chemical treatment, residual oil
Table 5.23 NOx control by chemical treatment, residual oil
Table 5.22 NOx control by chemical treatment, residual oil
Table 5.21 NOx control by chemical treatment, residual oil
Table 5.20 NOx control by chemical treatment, residual oil
Table 5.19 NOx control by chemical treatment, residual oil
Table 5.18 NOx control by chemical treatment, residual oil
Table 5.17 NOx control by chemical treatment, residual oil
Table 5.16 NOx control by chemical treatment, low sulfur coal
Table 5.15 NOx control by chemical treatment, residual oil
Table 5.14 NOx control by chemical treatment, residual oil
Table 5.13 NOx control by chemical treatment, residual oil
Table 5.12 NOx control by chemical treatment, residual oil
Table 5.11 NOx control by chemical treatment, residual oil
Table 5.10 NOx control by chemical treatment, residual oil
Table 5.9 NOx control by chemical treatment, residual oil
Table 5.8 NOx control by chemical treatment, residual oil
Table 5.7 NOx control by chemical treatment, residual oil
Table 5.6 NOx control by chemical treatment, residual oil
Table 5.5 NOx control by chemical treatment, residual oil
Table 5.4 NOx control by chemical treatment, residual oil
Table 5.3 NOx control by chemical treatment, residual oil
Table 5.2 NOx control by chemical treatment, residual oil
Table 5.1 NOx control by chemical treatment, residual oil
Table 6.22 Filter, vibrating hydrosieve—production costs
Table 6.23 Filter, plate, and frame—design bases
Table 6.24 Filter, plate, and frame—variable costs
Table 6.25 Filter, plate, and frame—production costs
Table 6.26 Gypsum stacking—design bases
Table 6.27 Gypsum stacking—variable costs
Table 6.28 Gypsum stacking—production costs
Table 6.29 Rotary kiln incineration—design bases
Table 6.30 Rotary kiln incineration—variable costs
Table 6.31 Rotary kiln incineration—production costs

Figures

Figure 5.1 Acid gas neutralization
Figure 5.2 Activated carbon adsorber
Figure 5.3 Direct spray gas cooler
Figure 5.4 Dust separator, bag filter/baghouse
Figure 5.5 Dust separator, cyclone
Figure 5.6 Dust separator, electrostatic precipitator
Figure 5.7 Flue gas desulfurization—citrate scrubbing
Figure 5.8 Flue gas desulfurization—double alkali scrubbing
Figure 5.9 Flue gas desulfurization—limestone/lime scrubbing
Figure 5.10 Flue gas desulfurization—Wellman-Lord scrubbing
Figure 5.11 Gas combustor for steam generation
Figure 5.12 Gas compression
Figure 5.13 Gas cooling
Figure 5.14 Gas chilling
Figure 5.15 Gas dispersion stack
Figure 5.16 Gas flare, steam assisted
Figure 5.17 Gas scrubber, solvent
Figure 5.18 NOx control by chemical treatment, extended scrubbing
Figure 5.19 NOx control by chemical treatment, Exxon thermal DeNOx process
Figure 5.20 NOx control by chemical treatment, KHI SCR process
Figure 5.21 NOx control by combustion modification
Figure 5.22 Vapor incineration, catalytic
Figure 5.23 Vapor incineration, thermal recuperative
Figure 5.24 Venturi scrubber
Figure 6.1 Chromate precipitation
Figure 6.2 Chromate recovery
Figure 6.3 Filters
Figure 6.4 Filter, tilting pan
Figure 6.5 Filter, rotary vacuum drum
Figure 6.6 Filter, rotary vacuum disk
Figure 6.7 Filter, traveling screen
Figure 6.8 Filter, vibrating hydrosieve
Figure 6.9 Filter, plate, and frame
Figure 6.10 Gypsum stacking
Figure 6.11 Rotary kiln incineration