

Gaseous and Solid Waste Treatment Cost Estimation

PEP Report 145D December 2019

P D Pavlechko Principle Analyst

R Smith Research and Analysis Associate Director

Process Economics Program

Downloaded 20 December 2019 05:34 AM UTC by Kusum Lata, IHS MARKIT (Kusum.Lata@ihsmarkit.com) - For Use by Licensed Subscribers Only

PEP Report 145D

Gaseous and Solid Waste Treatment Cost Estimation

P D Pavlechko, Principal Analyst

R Smith, Research and Analysis Associate Director

Abstract

Waste produced in chemical processes is a growing concern for the chemical process industry. In general, the industry was slow to comprehend the issue of waste treatment in the early years of industrialization, which tended to spawn processes with limited regard for waste products, and weak understanding of long term consequences. As the implications for waste generation and accumulation grew, environmental concerns began to pressure the industry for better treatment systems and disposal problems. The growing pressure and regulation push the industry to minimize wastes and improve treatment methods. Ideally, zero discharge is the ultimate target, but most processes cannot live up to that goal. Until such time, as all processes have been improved to eliminate all wastes, waste treatment will remain a required segment of the industry.

Gas, liquid, solid, and water waste streams each have different treatment methods. PEP Report 295 (December 2016) reviewed the methods for wastewater treatment, and treatment techniques for solid sludges resulting from the wastewater treatment systems. This report addresses similar methods for gaseous wastes and non-wastewater based solid wastes. Liquid wastes other than wastewater may be treated by some of the same methods evaluated in this report or PEP Report 295, with minimal adaptation.

Gaseous waste treatment methods include absorption, adsorption, dust collection, chemical reaction, combustion, and physical property adjustment. Absorption methods involve solvent scrubbers, water scrubbers, and venturi scrubbers to capture components of a gas stream by a liquid. Adsorption methods cover selective capture of gas stream components on a bed of solid particles. Dust collection separates particulate dust entrained in a gas stream using fabric filters, cyclones, or electrostatic precipitators. Chemical reaction alters other methods to enhance the intended behavior of a technique by chemically altering the substances in the stream, like caustic scrubbers to absorb acid gases. Combustion systems destroy components in a gas stream to ash and slag for mineral content and carbon dioxide and steam for organic species. Physical property adjustment involves unit operations to change temperature and pressure of the gas, generally for subsequent treatment.

Treatment methods for solid waste streams include physical separation for storage, conversion, or destruction. Separations include screening, gravity settling, flotation, filtration, and centrifugation. Precipitation and crystallization form the solids to be separated, which may be supplemented by chemical reaction. The nature of the solid waste components determines the type and configuration of the treatment methods, which may be inorganic salts, insoluble organics, sludges, or tars. Destruction methods involve incineration of the waste. PEP Report 295 already covered centrifuges, dryers, microfiltration, and ultrafiltration separation techniques for wastewater sludge; however, each method is adaptable to general solid waste materials. Circulating bed combustion and fluidized bed incineration were also previously evaluated for wastewater sludge destruction, but they are also adaptable to general solid waste treatment.

This report reviews 29 gaseous waste treatment methods and 10 solid waste treatment systems. The solid treatment chapter also discusses adapting 6 of the evaluations from PEP Report 295 to evaluate the routes for a wider array of solids. Each of the methods have been revised and updated to supply incremental cost contributions of individual waste treatment systems, such that they can be used to incorporate an estimate of waste treatment for a process as part of the conceptual design and economic evaluation.

Contents

1	Introduction	10
2	Summary	11
	Industry	11
	Technology	11
	Gaseous waste treatment	11
	Solid waste treatment	11
	Liquid waste treatment	12
	Economics	12
3	Industry status	13
	Gaseous waste	14
	Solid waste	14
4	Technology	15
	Gaseous waste treatment	15
	Solid waste treatment	16
	Liquid waste treatment	17
	Wastewater treatment	17
	Liquid chemical waste treatment	17
5	Process discussion	19
	Acid gas neutralization	20
	Application	20
	Process description	20
	Economics of acid gas neutralization with caustic	21
	Economics of acid gas neutralization with lime	22
	Activated carbon adsorber	24
	Application	24
	Process description	24
	Economics	25
	Direct spray gas cooler	27
	Application	27
	Process description	27
	Economics	28
	Dust separator, bag filter/baghouse	30
	Application	30
	Process description	30
	Economics	31
	Dust separator, cyclone	33
	Application	33
	Process description	33
	Economics	34
	Dust separator, electrostatic precipitator	36
	Application	36
	Process description	36
	Economics	37
	Flue gas desulfurization, citrate scrubbing	39
	Application	39
	Process description	39
	Economics	41
	Flue gas desulturization, double alkali scrubbing	43
	Application	43

Process description	43
Economics	44
Flue gas desulfurization, limestone/lime scrubbing	47
Application	47
Process description	47
Economics of flue gas desulfurization with limestone scrubbing	48
Economics of flue gas desulfurization with lime scrubbing	51
Flue gas desulfurization. Wellman-Lord scrubbing	53
Application	53
Process description	54
Economics	55
Gas combustor for steam generation	57
Application	57
Process description	57
Economics	58
Gas compression	60
Application	60
Equipment description	60
Equipment description	61
Gas cooling	63
Application	63
Equipment description	63
Equipment description	64
Cas chilling	66
Application	66
Application Process description	00
Flocess description	67
Cas dispersion stock	60
Application	69
	69
Design guidennes Economica	09
Coo flore steem assisted	70
	72
	12
Process description	12
	73
Gas scrubber	75
Application	75
Process description	/5
Economics of a solvent gas scrubber	/6
Economics of a water gas scrubber	//
NOx control by chemical treatment, extended absorption	79
Application	79
Process description	79
Economics	80
NOx control by chemical treatment, Exxon thermal DeNOx process	82
Application	82
Process description	82
Economics	83
NOx control by chemical treatment, KHI SCR process	85
Application	85
Process description	85
Economics	86
NOx control by combustion modification	88
Application	88

	Process description	89
	Economics of NOx control by combustion modification for high sulfur coal	90
	Economics of NOx control by combustion modification for low sulfur coal	92
	Economics of NOx control by combustion modification for residual oil	94
	Vapor incineration, catalytic	96
	Application	96
	Process description	96
	Economics	97
	Vapor incineration, thermal recuperative	99
	Application	99
	Process description	99
	Economics Venturi ecrubher	100
		102
	Application Process description	102
	Fronomics	102
6	Solid waste treatment processes	105
0	Chromate precipitation	105
	Application	106
	Process description	100
	Economics	100
	Chromate recovery	109
	Application	109
	Process description	109
	Economics	110
	Filters	112
	Application	112
	Process description	112
	Economics of a tilting pan filter	113
	Economics of a rotary drum filter	116
	Economics of a rotary disk filter	118
	Economics of a traveling screen filter	120
	Economics of a vibrating hydrosieve filter	122
	Economics of a plate and frame filter	124
	Gypsum stacking	126
	Application	126
	Process description	126
	Economics	127
	Application	129
	Application Broose description	129
	Fronemics	129
	Solid separations	130
	Coarse particle centrifuges	132
	Fine narticle centrifuges	132
	Rotary direct drivers	132
	Microfiltration and ultrafiltration	132
	Solids incineration	132
	Circulating bed combustion	133
	Fluidized bed incineration	133
		100

Tables

Table 2.1 Waste treatment processes	12
Table 5.1 Acid gas neutralization with caustic—design bases	21
Table 5.2 Acid gas neutralization with caustic—variable costs	21
Table 5.3 Acid gas neutralization with caustic—production costs	22
Table 5.4 Acid gas neutralization with lime—design bases	22
Table 5.5 Acid gas neutralization with lime—variable costs	23
Table 5.6 Acid gas neutralization with lime—production costs	23
Table 5.7 Activated carbon adsorber—design bases	25
Table 5.8 Activated carbon adsorber—variable costs	25
Table 5.9 Activated carbon adsorber—production costs	26
Table 5 10 Direct spray gas cooler—design bases	28
Table 5.11 Direct spray gas cooler—variable costs	28
Table 5.12 Direct spray gas cooler production costs	20
Table 5.12 Direct spray gas cooler production costs	20
Table 5.15 Dust separator, bag filter/baghouse variable costs	30
Table 5.14 Dust separator, bag filter/baghousevaliable costs	32
Table 5.15 Dust separator, bag inter/bagnouse—production costs	32
Table 5.10 Dust separator, cyclone—uesign bases	34
Table 5.17 Dust separator, cyclone—variable costs	34
Table 5.18 Dust separator, cyclone—production costs	30
Table 5.19 Dust separator, electrostatic precipitator—design bases	37
Table 5.20 Dust separator, electrostatic precipitator—variable costs	37
Table 5.21 Dust separator, electrostatic precipitator—production costs	38
Table 5.22 Flue gas desulturization-citrate scrubbing-design bases	41
Table 5.23 Flue gas desulturization-citrate scrubbing-variable costs	41
Table 5.24 Flue gas desulfurization-citrate scrubbing-production costs	42
Table 5.25 Flue gas desulfurization-double alkali scrubbing-design bases	44
Table 5.26 Flue gas desulfurization–double alkali scrubbing—variable costs	45
Table 5.27 Flue gas desulfurization–double alkali scrubbing—production costs	46
Table 5.28 Flue gas desulfurization–limestone scrubbing—design bases	48
Table 5.29 Flue gas desulfurization–limestone scrubbing—variable costs	49
Table 5.30 Flue gas desulfurization–limestone scrubbing—production costs	50
Table 5.31 Flue gas desulfurization–lime scrubbing—design bases	51
Table 5.32 Flue gas desulfurization–lime scrubbing—variable costs	51
Table 5.33 Flue gas desulfurization–lime scrubbing—production costs	52
Table 5.34 Flue gas desulfurization–Wellman-Lord scrubbing—design bases	55
Table 5.35 Flue gas desulfurization–Wellman-Lord scrubbing—variable costs	55
Table 5.36 Flue gas desulfurization–Wellman-Lord scrubbing—production costs	56
Table 5.37 Gas combustor for steam generation—design bases	58
Table 5.38 Gas combustor for steam generation—variable costs	58
Table 5.39 Gas combustor for steam generation—production costs	59
Table 5.40 Gas compression—design bases	61
Table 5.41 Gas compression—variable costs	61
Table 5.42 Gas compression—production costs	62
Table 5.43 Gas cooling-design bases	64
Table 5.44 Gas cooling—variable costs	64
Table 5.45 Gas cooling—production costs	65
Table 5.46 Gas chilling-design bases	67
Table 5.47 Gas chilling—variable costs	67
Table 5.48 Gas chilling—production costs	68
Table 5.49 Gas dispersion stack—design bases	70
Table 5.50 Gas dispersion stack—variable costs	70
Table 5.51 Gas dispersion stack—production costs	71
Table 5.52 Gas flare, steam assisted—design bases	73
Table 5.53 Gas flare, steam assisted—variable costs	74

Table 5.54 Cap flare, steam assisted, production asste	74
Table 5.54 Gas hare, steam assisted—production costs	74
Table 5.55 Gas scrubber, solvent—design bases	76
Table 5.56 Gas scrubber, solvent—variable costs	76
Table 5.57 Gas scrubber, solvent—production costs	77
Table 5.58 Gas scrubber, water-design bases	77
Table 5.59 Gas scrubber, water-variable costs	78
Table 5.60 Gas scrubber, water—production costs	78
Table 5.61 NO ₂ control by chemical treatment, extended scrubbing—design bases	80
Table 5.62 NO, control by chemical treatment, extended scrubbing—variable costs	80
Table 5.62 NO, control by chemical treatment, extended scrubbing production costs	81
Table 5.64 NO control by chemical treatment, Extended scrubbing—production costs	01
Table 5.64 NO _x control by chemical treatment, Exxon thermal DeNO _x process—design bases	03
Table 5.65 NO _x control by chemical treatment, Exxon thermal DeNO _x process—variable costs T_{1} by 5.65 NO _x control by chemical treatment, Exxon thermal DeNO _x process—variable costs	84
Table 5.66 NO _x control by chemical treatment, Exxon thermal DeNO _x process—production costs	84
Table 5.67 NOx control by chemical treatment, KHI SCR process—design bases	86
Table 5.68 NO _x control by chemical treatment, KHI SCR process—variable costs	87
Table 5.69 NO _x control by chemical treatment, KHI SCR process—production costs	87
Table 5.70 NO _x control by combustion modification—emissions inventory	89
Table 5.71 NO _x control by combustion modification—NOx reduction %	89
Table 5.72 NOx control by combustion modification, high sulfur coal-design bases	90
Table 5.73 NO _x control by combustion modification, high sulfur coal—variable costs	90
Table 5.74 NO _x control by combustion modification, high sulfur coal—production costs	91
Table 5.75 $NO_{\rm x}$ control by combustion modification. Low sulfur coal—design bases	92
Table 5.76 NO, control by combustion modification, low sulfur coal—variable costs	02
Table 5.77 NO. control by combustion modification, low sulfur coal production costs	02
Table 5.77 NO _x control by combustion modification, low summicide $-\mu$ focuction costs	93
Table 5.78 NO _x control by computing modification, residual oil—design bases	94
Table 5.79 NO _x control by combustion modification, residual oil—variable costs	94
Table 5.80 NO _x control by combustion modification, residual oil—production costs	95
Table 5.81 Vapor incineration, catalytic—design bases	97
Table 5.82 Vapor incineration, catalytic—variable costs	97
Table 5.83 Vapor incineration, catalytic—production costs	98
Table 5.84 Vapor incineration, thermal recuperative—design bases	100
Table 5.85 Vapor incineration, thermal recuperative—variable costs	100
Table 5.86 Vapor incineration, thermal recuperative—production costs	101
Table 5.87 Venturi scrubber-design bases	103
Table 5.88 Venturi scrubber—variable costs	103
Table 5.89 Venturi scrubber—production costs	104
Table 6.1 Chromate precipitation—design bases	107
Table 6.2 Chromate precipitationvariable costs	107
Table 6.2 Chromate precipitation production costs	107
Table 6.3 Chromate precipitation—production costs	110
Table 6.4 Chromate recovery—design bases	110
Table 6.5 Chromate recovery—variable costs	110
Table 6.6 Chromate recovery—production costs	111
Table 6.7 Filters	112
Table 6.8 Filter, tilting pan—design bases	114
Table 6.9 Filter, tilting pan—variable costs	114
Table 6.10 Filter, tilting pan—production costs	115
Table 6.11 Filter, rotary vacuum drum—design bases	116
Table 6.12 Filter, rotary vacuum drum—variable costs	117
Table 6.13 Filter, rotary vacuum drum—production costs	117
Table 6.14 Filter, rotary vacuum disk-design bases	118
Table 6.15 Filter, rotary vacuum disk-variable costs	119
Table 6.16 Filter, rotary vacuum disk—production costs	119
Table 6.17 Filter, traveling screen—design bases	120
Table 6.18 Filter, traveling screen—variable costs	121
Table 6.19 Filter, traveling screen_production costs	121
Table 6.20 Filter, vibrating bydrosieve_design bases	121
Table 6.21 Filter, vibrating hydrosieve veriable costs	100
Table 0.2 Fritter, vibrating flydrosieve—variable Costs	123

Downloaded 20 December 2019 05:34 AM UTC by Kusum Lata, IHS MARKIT (Kusum.Lata@ihsmarkit.com) - For Use by Licensed Subscribers Only

Table 6.22 Filter, vibrating hydrosieve—production costs	123
Table 6.23 Filter, plate, and frame—design bases	124
Table 6.24 Filter, plate, and frame—variable costs	125
Table 6.25 Filter, plate, and frame—production costs	125
Table 6.26 Gypsum stacking—design bases	127
Table 6.27 Gypsum stacking—variable costs	127
Table 6.28 Gypsum stacking—production costs	128
Table 6.29 Rotary kiln incineration—design bases	130
Table 6.30 Rotary kiln incineration—variable costs	130
Table 6.31 Rotary kiln incineration—production costs	131

Figures

Figure 5.1 Acid gas neutralization	20
Figure 5.2 Activated carbon adsorber	24
Figure 5.3 Direct spray gas cooler	27
Figure 5.4 Dust separator, bag filter/baghouse	30
Figure 5.5 Dust separator, cyclone	33
Figure 5.6 Dust separator, electrostatic precipitator	36
Figure 5.7 Flue gas desulfurization—citrate scrubbing	39
Figure 5.8 Flue gas desulfurization—double alkali scrubbing	43
Figure 5.9 Flue gas desulfurization—limestone/lime scrubbing	47
Figure 5.10 Flue gas desulfurization—Wellman-Lord scrubbing	53
Figure 5.11 Gas combustor for steam generation	57
Figure 5.12 Gas compression	60
Figure 5.13 Gas cooling	63
Figure 5.14 Gas chilling	66
Figure 5.15 Gas dispersion stack	69
Figure 5.16 Gas flare, steam assisted	72
Figure 5.17 Gas scrubber, solvent	75
Figure 5.18 NO _x control by chemical treatment, extended scrubbing	79
Figure 5.19 NO _x control by chemical treatment, Exxon thermal DeNO _x process	82
Figure 5.20 NO _x control by chemical treatment, KHI SCR process	85
Figure 5.21 NO _x control by combustion modification	88
Figure 5.22 Vapor incineration, catalytic	96
Figure 5.23 Vapor incineration, thermal recuperative	99
Figure 5.24 Venturi scrubber	102
Figure 6.1 Chromate precipitation	106
Figure 6.2 Chromate recovery	109
Figure 6.3 Filters	112
Figure 6.4 Filter, tilting pan	113
Figure 6.5 Filter, rotary vacuum drum	116
Figure 6.6 Filter, rotary vacuum disk	118
Figure 6.7 Filter, traveling screen	120
Figure 6.8 Filter, vibrating hydrosieve	122
Figure 6.9 Filter, plate, and frame	124
Figure 6.10 Gypsum stacking	126
Figure 6.11 Rotary kiln incineration	129

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit News all IHS Markit logs and trade names contained in this presentation that are subject to license. Opinions, statement, estimate, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omisions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit™. All rights reserved and all intellectual property rights are retained by IHS Markit. Nould not output of external websites. Copyright © 2019, IHS Markit™. All rights reserved and all intellectual property rights are retained by IHS Markit.

