

Propane Dehydrogenation

PEP Report 267D

December 2019

PEP Report 267D

Propane Dehydrogenation

Mike Kelly, Director—Strategic Analytics & Process Technology

Abstract

Propylene is second only to ethylene in size as the largest building block in the chemical industry. Historically, propylene was produced almost exclusively as a co-product in ethylene plants (steam crackers) and refinery operations (primarily fluid catalytic cracking). The supply landscape has changed dramatically over the last decade as propylene output from these traditional sources has slowed relative to demand. The resulting imbalance has led to an increasing reliance on other on-purpose technologies for manufacturing propylene.

Propane dehydrogenation (PDH) is an on-purpose technology that has gained much traction in the marketplace. The global supply of propane continues to expand on the back of shale gas/tight oil production, providing a relatively inexpensive feedstock for propylene production. The number of PDH plants around the world has more than doubled in the last 10 years, and another 10 million metric tons of additional capacity is expected to come online over the next 5 years.

In this report, which serves as an update to Report 267A (published on October 2015), a general review of the PDH technical field is provided along with detailed technoeconomic evaluations for the following PDH technologies:

- Lummus CATOFIN® process
- UOP OleflexTM process
- thyssenkrupp STAR process®

The analysis and technoeconomic results that follow are based on a design capacity of 750 kMTA of polymer-grade propylene. Alternative capital investment and production cost estimates are also provided for plant capacities of 500 and 1000 kMTA. While the capital investment and production cost results herein are presented on a US Gulf Coast basis, the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows for the viewing of results for other major regions along with the conversion between English and metric units.

Contents

1	Introduction	
2	Summary	Ş
	Industry aspects	g
	Technical aspects	10
	Lummus CATOFIN®	11
	UOP Oleflex™	11
	thyssenkrupp STAR®	12
	Economic aspects	12
3	Industry status	14
	Propane	14
	Supply	14
	Demand	16
	Trade	17
	Propylene	17
	Supply	18
	Demand	20
	Trade	21
	Strategic issues	23
	Plastic waste quickly becoming the leading near-term issue	23
	Emergence of stronger China environmental policy	23
	Propane availability versus ability to consume	24
	Transportation trends impact refinery-based propylene supply	25
	Crude to Chemicals as a viable production path	26
	IMO 2020 impact on near-term propylene supply	28
	Sustainability of methanol to olefins	29
	The next wave of crackers	29
	On-purpose assets investment growth eventually slows	31
	Potential roadblocks to China's coal technology	32
	Growing alternative propylene technologies	33
	PDH investment	33
4	Technology review	36
	Chemistry	36
	Thermodynamics	38
	Catalysts	39
	Licensors	40
	Lummus	41
	Process flow	41
	Process advantages	43
	Reactor	44
	Catalyst	45
	HGM	46
	UOP	47
	Process flow	47
	Process advantages	49
	Catalyst	49
	Reactor	51
	Regeneration	53
	Other	54
	thyssenkrupp Industrial Solutions (tkIS)	55

	Process flow	56
	Process advantages	57
	Reactor	58
	Regeneration	59
	Catalyst	61
	Oxydehydrogenation	64
	Dow	67
5	Process economics—Lummus CATOFIN®	69
	Process description	69
	Section 100—Reaction	69
	Section 200—Compression and drying	70
	Section 300—Product separation	70
	Process discussion	77
	Cost estimates	79
	Capital costs	79
	Production costs	82
6	Process economics—UOP Oleflex™	85
	Process description	85
	Section 100—Reaction	85
	Section 200—Compression and treating	86
	Section 300—Product separation	86
	Process discussion	92
	Cost estimates	95
	Capital costs	95
	Production costs	98
7	Process economics—tkIS STAR®	102
	Process description	102
	Section 100—Reaction	102
	Section 200—Compression and treating	103
	Section 300—Product separation	104
	Process discussion	111
	Cost estimates	112
	Capital costs	113
	Production costs	115
	pendix A—Patent summaries	119
Ap	pendix B—Design and cost basis	147
	Cost bases	148
	Capital investment	148
	Project construction timing	150
	Available utilities	150
Λ	Production costs	151
	pendix C—Cited references	153
	pendix D—Patents by company	160
Ap	pendix E—Process flow diagrams	164

Tables

Table 2.1 Comparison of PDH process conditions and features	11
Table 4.1 UOP Oleflex technology advancements	51
Table 5.1 Propylene from propane by the Lummus CATOFIN process—Design bases	71
Table 5.2 Propylene from propane by the Lummus CATOFIN process—Stream flow	72
Table 5.3 Propylene from propane by the Lummus CATOFIN process—Major equipment	74
Table 5.4 Propylene from propane by the Lummus CATOFIN process—Utilities summary	76
Table 5.5 Propylene from propane by the Lummus CATOFIN process—Capital investment	81
Table 5.6 Propylene from propane by the Lummus CATOFIN process—Capital investment by section	
Table 5.7 Propylene from propane by the Lummus CATOFIN process—Variable costs	84
Table 5.8 Propylene from propane by the Lummus CATOFIN process—Production cost	84
Table 6.1 Propylene from propane by the UOP Oleflex process—Design bases	87
Table 6.2 Propylene from propane by the UOP Oleflex process—Stream flows	88
Table 6.3 Propylene from propane by the UOP Oleflex process—Major equipment	90
Table 6.4 Propylene from propane by the UOP Oleflex process—Utilities summary	92
Table 6.5 Propylene from propane by the UOP Oleflex process—Capital investment	97
Table 6.6 Propylene from propane by the UOP Oleflex process—Capital investment by section	98
Table 6.7 Propylene from propane by the UOP Oleflex process—Variable costs	100
Table 6.8 Propylene from propane by the UOP Oleflex process—Production costs	101
Table 7.1 Propylene from propane by the tkIS STAR process—Design bases	105
Table 7.2 Propylene from propane by the tkIS STAR process—Stream flows	106
Table 7.3 Propylene from propane by the tkIS STAR process—Major equipment	108
Table 7.4 Propylene from propane by the tkIS STAR process—Utilities summary	110
Table 7.5 Propylene from propane by the tkIS STAR process—Capital investment	114
Table 7.6 Propylene from propane by the tkIS STAR process—Capital investment by section	115
Table 7.7 Propylene from propane by the tkIS STAR process—Variable costs	117
Table 7.8 Propylene from propane by the tkIS STAR process—Production costs	118

Figures

Figure 2.1 Comparison of PDH total fixed capital for Q1-19	13
Figure 2.2 Comparison of PDH production costs for Q1-19	13
Figure 3.1 World propane production by sector	15
Figure 3.2 World propane production by region	15
Figure 3.3 World propane demand by sector	16
Figure 3.4 World propane demand by region	17
Figure 3.5 World PG/CG propylene supply and demand	18
Figure 3.6 World PG/CG propylene production by technology	19
Figure 3.7 World PG/CG propylene demand by end use	21
Figure 3.8 Regional PG/CG propylene net trade	22
Figure 3.9 Global PDH capacity additions	34
Figure 3.10 Licensor market share in 2019	35
Figure 4.1 Reaction network of propane dehydrogenation	37
Figure 4.2 Equilibrium conversion of light alkanes at atmospheric pressure	38
Figure 4.3 Equilibrium conversion of propane at different pressures	39
Figure 4.4 Lummus CATOFIN process flow	42
Figure 4.5 Lummus CATOFIN reactor schematic	44
Figure 4.6 UOP Oleflex process flow	48
Figure 4.7 UOP Oleflex radial flow reactor	52
Figure 4.8 UOP Oleflex CCR regeneration unit	54
Figure 4.9 tkIS STAR process flow	57
Figure 4.10 tkIS STAR reformer furnace box	58
Figure 4.11 tkIS STAR regeneration sequence	59
Figure 4.12 tkIS STAR reactor valve sequencing-production mode	60
Figure 4.13 tkIS STAR reactor valve sequencing-regeneration mode	61
Figure 4.14 tkIS oxydehydrogenation reaction chemistry	64
Figure 4.15 Dow FCDh simplified process flow	68
Figure 5.1 Propylene from propane by the Lummus CATOFIN process—Capital investment	80
Figure 5.2 Propylene from propane by the Lummus CATOFIN process—Net production costs	83
Figure 5.3 Propylene from propane by the Lummus CATOFIN process—Product value	83
Figure 6.1 Propylene from propane by the UOP Oleflex process—Capital investment	96
Figure 6.2 Propylene from propane by the UOP Oleflex process—Net production costs	99
Figure 6.3 Propylene from propane by the UOP Oleflex process—Product value	99
Figure 7.1 Propylene from propane by the tkIS STAR process—Capital investment	113
Figure 7.2 Propylene from propane by the tkIS STAR process—Net production costs	116
Figure 7.3 Propylene from propane by the tkIS STAR process—Product value	116

Figures for Appendix E

Figure 5.4 Propylene from propane by the Lummus CATOFIN process—Process flow diagram	165
Figure 6.4 Propylene from propane by the UOP Oleflex process—Process flow diagram	168
Figure 7.4 Propylene from propane by the tkIS STAR process—Process flow diagram	171

Glossary

ABD Apparent bulk density

ABS Acrylonitrile butadiene styrene AEPW Alliance to end plastic waste

ASU Air separation unit

atm Atmospheres

BDH Butane dehydrogenation
BFD Block flow diagram
bhp Brake horsepower
BLI Battery limits investment

bpd Barrels per day
Btu British thermal units

CCR Continuous catalyst regeneration

CDU Crude distillation unit
CG Chemical grade
COTC Crude oil to chemicals

cP Centipoise
CTO Coal to olefins
CTP Coal to propylene

Dia Diameter

DMDS Dimethyl disulfide

FCC Fluidized catalytic cracking

FCDh Fluidized catalytic dehydrogenation

FOB Free on board

ft Feet
ft³ Cubic feet
g Grams
gal Gallon

GDP Gross domestic product gpm Gallons per minute HGM Heat generating material HPS High pressure steam

hr Hours

HRSG Heat recovery steam generation

HSFO High sulfur fuel oil

in Inches
kCal Kilocalorie
kg Kilograms
kJ Kilojoules

kMTA Thousand metric tons per year

kPa Kilopascals kW Kilowatt kWh Kilowatt hour

I Liters
Ib Pounds

LHSV Liquid hourly space velocity
LNG Liquefied natural gas

LPG Liquefied petroleum gas

m Meters
M Thousand

Glossary

 $\begin{tabular}{ll} m^2 & Square meters \\ m^3 & Cubic meters \\ \end{tabular}$

MAPD Methyl acetylene & propadiene

MDEA Methyldiethanolamine MEA Monoethanolamine mgal Thousand gallons

min Minutes

mlb Thousand pounds

mm Millimeters
MM Million
mol Moles

mol% Molar percent mPa Megapascals

MSCF Thousand standard cubic feet

MTBE Methyl tert-butyl ether
MTO Methanol to olefins
MTP Methanol to propylene
MTPY Metric tons per year
NGL Natural gas liquids

OCT Olefins conversion technology
ODH Oxidative dehydrogenation
PDH Propane dehydrogenation
PEP Process economics program

PFD Process flow diagram

ppb Parts per billion ppm Parts per million

PSA Pressure swing adsorption psi Pounds per square inch

psia Pounds per square inch absolute psig Pounds per square inch gauge

PUR Polyurethane

RGP Refinery grade propylene
ROI Return on investment

s Second(s)

SCF Standard cubic feet SCM Standard cubic meter

SCR Selective catalytic reduction
SHP Selective hydrogenation process

STAR Steam active reforming
TAME tert-Amyl methyl ether
TFC Total fixed capital

tkIS thyssenkrupp Industrial Solutions

VLGS Very Large Gas Carriers
VOC Volatile Organic Compounds

vol% Volume percent w/w Weight for weight wt% Weight percent

yr Year

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer

The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external websites. Copyright © 2019, IHS Markit.*

