PEP Report 44C

Ammonia

Rajesh Verma, Associate Director
Narendra Agnihotra, Associate Director
Dipti Dave, Associate Director
Syed Naqvi, Executive Technical Director

Abstract

Although fundamental ammonia-manufacturing technologies have not radically changed in the last ten to fifteen years, numerous technological changes and improvements have taken place in processing technologies, aiming for increased energy efficiencies and, of late, for higher capital productivity and improved competitive profit margins from lower operating costs. Most of the above advantages are being achieved through development and implementation of better process conditions and more efficient equipment design.

In the last decade, several improved and more efficient ammonia technologies have already been commercialized worldwide by major licensors, including Haldor Topsoe, KBR, Uhde, and Ammonia Casale. This PEP report provides an overview of the catalysts and technology advancement occurred in the last decade in ammonia process. The report then develops the process economics for production from the most common type of ammonia feedstock, natural gas. The report will also highlight the major hallmarks of the technologies, along with the current commercial picture for the ammonia industry.

This report covers the detailed technology descriptions and the cost analysis of the Casale’s Ammonia process, KBR’s PURIFIER™ process, and Uhde Dual pressure process. The production economics assessment in this report is based on a US Gulf Coast location. However, an iPEP Navigator module (an excel-based computer costing model developed by IHS Markit) is attached with this report to allow a quick calculation of the process economics for three other major regions also—Germany, Japan, and China. For every process, the module also allows the production economics to be reported in English or metric units in each region.

The technological and economic assessment of the processes is PEP’s independent interpretation of the companies’ commercial processes based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. We do believe that they are sufficiently representative of the processes and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.
Contents

1. **Introduction** 10
2. **Summary** 12
 - General aspects 12
 - Trends in synthetic ammonia plant development 13
 - Ammonia plant retrofits 14
 - Trends in costs 14
 - Technical aspects 15
 - Casale process for Ammonia production 16
 - KBR Purifier process for Ammonia production 17
 - Uhde’s Dual pressure process for Ammonia production 18
 - Process economics 19
 - Environmental aspects 20
3. **Industry overview** 22
4. **Technology review** 27
 - Process chemistry and generic process steps 27
 - Feedstock 28
 - Desulphurization 29
 - Pre-reforming 29
 - Steam Methane Reformer (SMR) 30
 - Primary reformer 31
 - Secondary reformer 31
 - Water Gas Shift (WGS) 31
 - Carbon dioxide removal 32
 - Methanation and compression 33
 - Ammonia synthesis loop 34
 - Casale advance ammonia technology 35
 - Casale secondary reformer 35
 - Casale Ammonia Synthesis reactor 38
 - Axial-radial catalyst beds 42
 - Catalyst system 44
 - KBR process for ammonia production 45
 - KBR’s KRES™ system 47
 - KBR’s Purifier process 52
 - KBR Advanced Ammonia process (KAAP) 56
 - KBR’s synthesis loop advancements 58
 - Combination of KRES & new synthesis loop 59
 - Other ammonia production technologies 60
 - Two-catalyst-bed ammonia converter 62
 - Three-catalyst-bed ammonia converter 63
 - Uhde Dual Pressure ammonia technology 64
 - Historical background 64
 - Scale up considerations 66
 - Uhde Dual Pressure process technical features 67
 - Uhde Dual Pressure process 70
 - **Liquid Ammonia production from natural gas via “Casale” process** 72
 - Process design basis 72
 - Material of construction 74
 - Storage tanks 74
 - Process description 75
<table>
<thead>
<tr>
<th>Natural gas reforming—Section 100</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syngas purification—Section 200</td>
<td>76</td>
</tr>
<tr>
<td>Ammonia production—Section 300</td>
<td>77</td>
</tr>
<tr>
<td>Ammonia refrigeration and steam systems</td>
<td>79</td>
</tr>
<tr>
<td>Process discussion</td>
<td>79</td>
</tr>
<tr>
<td>Natural gas pre-treatment</td>
<td>79</td>
</tr>
<tr>
<td>Primary and secondary reforming</td>
<td>80</td>
</tr>
<tr>
<td>Reformer pressure</td>
<td>81</td>
</tr>
<tr>
<td>Water-gas shift and methanation reactions</td>
<td>81</td>
</tr>
<tr>
<td>Ammonia synthesis</td>
<td>82</td>
</tr>
<tr>
<td>Steam and power system</td>
<td>82</td>
</tr>
<tr>
<td>Waste streams</td>
<td>82</td>
</tr>
<tr>
<td>Cost estimates</td>
<td>91</td>
</tr>
<tr>
<td>Fixed capital costs</td>
<td>91</td>
</tr>
<tr>
<td>Production costs</td>
<td>92</td>
</tr>
<tr>
<td>Environmental footprint</td>
<td>96</td>
</tr>
</tbody>
</table>

6 **Liquid Ammonia production from natural gas via “KBR’s PurifierPlus™” process** | 98 |
Process design basis	98
Material of construction	100
Storage tanks	101
Process description	101
Natural gas reforming—Section 100	102
Syngas purification—Section 200	102
Ammonia production—Section 300	104
Ammonia refrigeration and steam systems	106
Process discussion	106
Cost estimates	117
Fixed capital costs	117
Production costs	117
Environmental footprint	123

7 **Liquid ammonia production from natural gas via “Udhe’s dual pressure” process** | 124 |
Process design basis	124
Material of construction	127
Storage tanks	127
Process description and discussion	128
Process description—Udhe Dual pressure Ammonia process	128
Natural gas reforming—Section 100	128
Syngas purification—Section 200	129
Ammonia production—Section 300	130
Ammonia recovery—Section 300	132
Ammonia refrigeration, steam, and cooling water systems	132
Ammonia refrigeration	132
Optimum utilization of process water heat for the generation of superheated HP steam	132
Plant start-up steam supply	133
Process discussion	133
Cost estimates	143
Fixed-capital costs	143
Production costs	144
Environmental footprint	148
Tables

Table 2.1 Techno-Economical comparison of the three processes
Table 2.2 Comparison of carbon and water footprints
Table 3.1 World ammonia capacity
Table 3.2 World production of ammonia
Table 3.3 World operating rates of ammonia
Table 3.4 World apparent consumption of ammonia
Table 3.5 World consumption of ammonia according to applications
Table 5.1 Casale process for Ammonia production from natural gas—Design basis/assumptions
Table 5.2 Casale process for Ammonia production from natural gas—Major streams flow
Table 5.3 Casale process for Ammonia production from natural gas—Unit critical parameters
Table 5.4 Casale process for Ammonia production from natural gas—Major equipment
Table 5.5 Casale process for Ammonia production from natural gas—Utilities summary
Table 5.6 Casale process for Ammonia production from natural gas—Total capital investment
Table 5.7 Casale process for Ammonia production from natural gas—Variable costs
Table 5.8 Casale process for Ammonia production from Natural gas—Environmental footprint
Table 6.1 KBR's PurifierTM process for Ammonia production from natural gas—Design basis/assumptions
Table 6.2 KBR's PurifierTM process for Ammonia production from natural gas—Major streams flow
Table 6.3 KBR's PurifierTM process for Ammonia production from Natural gas—Unit critical parameters
Table 6.4 KBR's Purifier™ process for Ammonia production from natural gas—Major equipment
Table 6.5 KBR's PurifierTM process for Ammonia production from natural gas—Utilities summary
Table 6.6 KBR's Purifier™ process for Ammonia production from natural gas—Total capital investment
Table 6.7 KBR's Purifier™ process for Ammonia production from natural gas—Variable costs
Table 6.8 KBR's Purifier™ process for Ammonia production from natural gas—Production costs
Table 6.9 KBR's Purifier™ process for Ammonia production from Natural gas—Environmental footprint
Table 7.1 Uhde Dual pressure Ammonia technology—Design basis/assumptions
Table 7.2 Liquid Ammonia production from natural gas via Uhde Dual pressure process—Major streams flow
Table 7.3 Uhde Dual pressure process—Capital investment by section
Table 7.4 Uhde Dual pressure process—Major equipment
Table 7.5 Uhde Dual pressure process—Utilities summary
Table 7.6 Uhde Dual pressure process—Total capital investment
Table 7.7 Uhde Dual pressure process—Production costs
Table 7.8 Uhde Dual pressure Ammonia process—Environmental footprint
Figures

Figure 4.1 Block flow diagram of Casale advance ammonia production process 28
Figure 4.2 Typical CO² removal scheme 33
Figure 4.3 Casale ammonia synthesis loop 35
Figure 4.4 Schematic diagram of conventional secondary reformer 36
Figure 4.5 Casale advance design for secondary reformer burner 37
Figure 4.6 Schematic diagram of advance secondary reformer 38
Figure 4.7 Two Catalyst Bed Axial-Radial Ammonia reactor 39
Figure 4.8 Schematic diagram of Casale multi-bed catalytic ammonia reactor 40
Figure 4.9 Three-catalyst bed Casale ammonia reactor 42
Figure 4.10 Gas distribution in an Axial-radial catalyst bed ammonia reactor 43
Figure 4.11 KBR’s single-train large capacity ammonia plant 45
Figure 4.12 KBR’s conventional ammonia synthesis loop 46
Figure 4.13 KBR’s proprietary unitized chiller system 47
Figure 4.14 KBR’s typical KRES system 48
Figure 4.15 KBR’s KRES in typical in series reactor arrangement 49
Figure 4.16 KBR’s KRES in typical parallel reactor arrangement 50
Figure 4.17 Typical heat curve for the secondary reformer effluent after KRES revamp 51
Figure 4.18 KBR’s typical Purifier system flow scheme 53
Figure 4.19 KBR’s typical Purifier™ ammonia process 54
Figure 4.20 KBR’s typical PurifierPlus™ ammonia process combines KRES and PurifierTM technologies 56
Figure 4.21 KBR’s typical KAAP process synthesis loop 57
Figure 4.22 KBR’s typical KAAPPlus™ process for ammonia production 58
Figure 4.23 Block diagram of a typical KBR’s new generation ammonia plant 59
Figure 4.24 Typical block diagram of a conventional and Linde designed ammonia production plant 61
Figure 4.25 Haldor Topsoe ammonia reactor (S-300) (Embodiment of fixed three catalyst beds) 62
Figure 4.26 Haldor Topsoe two-catalyst-bed ammonia reactor (US4181701) 63
Figure 4.27 Haldor Topsoe three catalyst beds ammonia reactor (US 6540971B2) 64
Figure 4.28 Uhde Low Energy ammonia process flow scheme 65
Figure 4.29 Dual Pressure ammonia synthesis 68
Figure 4.30 Uhde ammonia converters 69
Figure 4.31 Uhde 3-Bed ammonia converter—Ammonia content versus temperature 70
Figure 4.32 Dual Pressure process flow scheme 71
Figure 5.1 Effect of Natural gas price on ammonia product price 96
Figure 5.2 Effect of plant capacity on ammonia product net production cost 96
Figure 6.1 Effect of Natural gas price on ammonia product price 122
Figure 6.2 Effect of plant capacity on ammonia product net production cost 122
Figure 7.2 The Uhde Ammonia process steam system 133
Figure 7.3 Effect of Natural gas price on Ammonia product price 148
Appendix D Figures

Figure 5.1 (PFD 1 of 3): Process schematic for Casale process for Ammonia production 171
Figure 5.1 (PFD 2 of 3): Process schematic for Casale process for Ammonia production 172
Figure 5.1 (PFD 3 of 3): Process schematic for Casale process for Ammonia production 173
Figure 6.1 (PFD 1 of 3): Process schematic for PurifierTM process for Ammonia production 174
Figure 6.1 (PFD 2 of 3): Process schematic for PurifierTM process for Ammonia production 175
Figure 6.1 (PFD 3 of 3): Process schematic for PurifierTM process for Ammonia production 176
 Figure 7.1 (PFD 1 of 3): Process schematic for Udhe’s Dual pressure process for Ammonia 177
 production
 Figure 7.1 (PFD 2 of 3): Process schematic for Udhe’s Dual pressure process for Ammonia 178
 production
 Figure 7.1 (PFD 3 of 3): Process schematic for Udhe’s Dual pressure process for Ammonia 179
 production