

Ammonia

PEP Report 44C December 2019

Rajesh Verma Associate Director

Narendra Agnihotra Associate Director

Dipti Dave Associate Director

Syed Naqvi Executive Technical Director

Process Economics Program

PEP Report 44C

Ammonia

Rajesh Verma, Associate Director Narendra Agnihotra, Associate Director Dipti Dave, Associate Director Syed Naqvi, Executive Technical Director

Abstract

Although fundamental ammonia-manufacturing technologies have not radically changed in the last ten to fifteen years, numerous technological changes and improvements have taken place in processing technologies, aiming for increased energy efficiencies and, of late, for higher capital productivity and improved competitive profit margins from lower operating costs. Most of the above advantages are being achieved through development and implementation of better process conditions and more efficient equipment design.

In the last decade, several improved and more efficient ammonia technologies have already been commercialized worldwide by major licensors, including Haldor Topsoe, KBR, Uhde, and Ammonia Casale. This PEP report provides an overview of the catalysts and technology advancement occurred in the last decade in ammonia process. The report then develops the process economics for production from the most common type of ammonia feedstock, natural gas. The report will also highlight the major hallmarks of the technologies, along with the current commercial picture for the ammonia industry.

This report covers the detailed technology descriptions and the cost analysis of the Casale's Ammonia process, KBR's PURIFIERTM process, and Uhde Dual pressure process. The production economics assessment in this report is based on a US Gulf Coast location. However, an iPEP Navigator module (an excel-based computer costing model developed by IHS Markit) is attached with this report to allow a quick calculation of the process economics for three other major regions also—Germany, Japan, and China. For every process, the module also allows the production economics to be reported in English or metric units in each region.

The technological and economic assessment of the processes is PEP's independent interpretation of the companies' commercial processes based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. We do believe that they are sufficiently representative of the processes and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.

Contents

1	Introduction	10
2	Summary	12
	General aspects	12
	Trends in synthetic ammonia plant development	13
	Ammonia plant retrofits	14
	Trends in costs	14
	Technical aspects	15
	Casale process for Ammonia production	16
	KBR Purifier process for Ammonia production	17
	Udhe's Dual pressure process for Ammonia production	18
	Process economics	19
	Environmental aspects	20
3	Industry overview	22
4	Technology review	27
	Process chemistry and generic process steps	27
	Feedstock	28
	Desulphurization	29
	Pre-reforming	29
	Steam Methane Reformer (SMR)	30
	Primary reformer	31
	Secondary reformer	31
	Water Gas Shift (WGS)	31
	Carbon dioxide removal	32
	Methanation and compression	33
	Ammonia synthesis loop	34
	Casale advance ammonia technology	35 35
	Casale secondary reformer	38
	Casale Ammonia Synthesis reactor Axial-radial catalyst beds	42
	Catalyst system	42
	KBR process for ammonia production	45
	KBR's KRES [™] system	47
	KBR's Purifier process	52
	KBR Advanced Ammonia process (KAAP)	56
	KBR's synthesis loop advancements	58
	Combination of KRES & new synthesis loop	59
	Other ammonia production technologies	60
	Two-catalyst-bed ammonia converter	62
	Three-catalyst-bed ammonia converter	63
	Uhde Dual Pressure ammonia technology	64
	Historical background	64
	Scale up considerations	66
	Uhde Dual Pressure process technical features	67
	Uhde Dual Pressure process	70
5	Liquid Ammonia production from natural gas via "Casale" process	72
	Process design basis	72
	Material of construction	74
	Storage tanks	74
	Process description	75

	Natural gas reforming—Section 100	75
	Syngas purification—Section 200	76
	Ammonia production—Section 300	77
	Ammonia refrigeration and steam systems	79
	Process discussion	79
	Natural gas pre-treatment	79
	Primary and secondary reforming	80
	Reformer pressure	81
	Water-gas shift and methanation reactions	81
	Ammonia synthesis	82
	Steam and power system	82
	Waste streams	82
	Cost estimates	91
	Fixed capital costs	91
	Production costs	92
	Environmental footprint	96
6	Liquid Ammonia production from natural gas via "KBR's PurifierPlus™" process	98
	Process design basis	98
	Material of construction	100
	Storage tanks	101
	Process description	101
	Natural gas reforming—Section 100	102
	Syngas purification—Section 200	102
	Ammonia production—Section 300	104
	Ammonia refrigeration and steam systems	106
	Process discussion	106
	Cost estimates	117
	Fixed capital costs	117
	Production costs	117
-	Environmental footprint	123
7	Liquid ammonia production from natural gas via "Udhe's dual pressure" process	124
	Process design basis Material of construction	124 127
	Storage tanks	127
	Process description and discussion	127
	Process description—Uhde Dual pressure Ammonia process	120
	Natural gas reforming—Section 100	128
	Syngas purification—Section 200	120
	Ammonia production—Section 300	130
	Ammonia recovery—Section 300	132
	Ammonia refrigeration, steam, and cooling water systems	132
	Ammonia refrigeration	132
	Optimum utilization of process water heat for the generation of superheated HP steam	132
	Plant start-up steam supply	133
	Process discussion	133
	Cost estimates	143
	Fixed-capital costs	143
	Production costs	144
	Environmental footprint	148

Tables

Table 2.1 Techno-Economical comparison of the three processes	19
Table 2.2 Comparison of carbon and water footprints	21
Table 3.1 Word ammonia capacity	22
Table 3.2 World production of ammonia	23
Table 3.3 World operating rates of ammonia	24
Table 3.4 World apparent consumption of ammonia	24
Table 3.5 World consumption of ammonia according to applications	25
Table 5.1 Casale process for Ammonia production from natural gas—Design basis/assumptions	72
Table 5.2 Casale process for Ammonia production from natural gas—Major streams flow	83
Table 5.3 Casale process for Ammonia production from natural gas—Unit critical parameters	87
Table 5.4 Casale process for Ammonia production from natural gas—Major equipment	88
Table 5.5 Casale process for Ammonia production from natural gas—Utilities summary	91
Table 5.6 Casale process for Ammonia production from natural gas—Total capital investment	93
Table 5.7 Casale process for Ammonia production from natural gas—Variable costs	94
Table 5.8 Casale process for Ammonia production from natural gas—Production costs	95
Table 5.9 Casale process for Ammonia production from Natural gas—Environmental footprint	97
Table 6.1 KBR's PurifierTM process process for Ammonia production from natural gas—Design	
basis/assumptions	99
Table 6.2 KBR's PurifierTM process for Ammonia production from natural gas—Major streams flow	108
Table 6.3 KBR's PurifierTM process for Ammonia production from Natural gas-Unit critical	
parameters	112
Table 6.4 KBR's Purifier [™] process for Ammonia production from natural gas—Major equipment	113
Table 6.5 KBR's PurifierTM process for Ammonia production from natural gas—Utilities summary	116
Table 6.6 KBR's Purifier™ process for Ammonia production from natural gas—Total capital	
investment	119
Table 6.7 KBR's PurifierTM process for Ammonia production from natural gas—Variable costs	120
Table 6.8 KBR's PurifierTM process for Ammonia production from natural gas—Production cost	121
Table 6.9 KBR's PurifierTM process for Ammonia production from Natural gas-Environmental	
footprint	123
Table 7.1 Uhde Dual pressure Ammonia technology—Design basis/assumptions	125
Table 7.2 Liquid Ammonia production from natural gas via Uhde Dual pressure process-Major	
streams flow	134
Table 7.3 Uhde Dual pressure process—Capital investment by section	139
Table 7.4 Uhde Dual pressure process—Major equipment	140
Table 7.5 Uhde Dual pressure process—Utilities summary	143
Table 7.6 Uhde Dual pressure process—Total capital investment	145
Table 7.7 Uhde Dual pressure process—Production costs	146
Table 7.8 Uhde Dual pressure Ammonia process—Environmental footprint	148

Figures

Figure 4.1 Block flow diagram of Casale advance ammonia poduction process Figure 4.2 Typical CO ² removal scheme Figure 4.3 Casale ammonia synthesis loop	28 33 35
Figure 4.4 Schematic diagram of conventional secondary reformer	36
Figure 4.5 Casale advance design for secondary reformer burner	37
Figure 4.6 Schematic diagram of advance secondary reformer	38
Figure 4.7 Two Catalyst Bed Axial-Radial Ammonia reactor	39
Figure 4.8 Schematic diagram of Casale multi-bed catalytic ammonia reactor	40
Figure 4.9 Three-catalyst bed Casale ammonia reactor	42
Figure 4.10 Gas distribution in an Axial-radial catalyst bed ammonia reactor	43
Figure 4.11 KBR's single-train large capacity ammonia plant	45
Figure 4.12 KBR's conventional ammonia synthesis loop	46
Figure 4.13 KBR's proprietary unitized chiller system	47
Figure 4.14 KBR's typical KRES system Figure 4.15 KBR's KRES in typical in series reactor arrangement	48 49
Figure 4.16 KBR's KRES in typical maselies reactor arrangement	49 50
Figure 4.17 Typical heat curve for the secondary reformer effluent after KRES revamp	51
Figure 4.18 KBR's typical Purifier system flow scheme	53
Figure 4.19 KBR's typical Purifier™ ammonia process	54
Figure 4.20 KBR's typical Purifier <i>plus</i> [™] ammonia process combines KRES and Purifier [™]	0.
technologies	56
Figure 4.21 KBR's typical KAAP process synthesis loop	57
Figure 4.22 KBR's typical KAAPPlus [™] process for ammonia production	58
Figure 4.23 Block diagram of a typical KBR's new generation ammonia plant	59
Figure 4.24 Typical block diagram of a conventional and Linde designed ammonia production plant 61	
Figure 4.25 Haldor Topsøe ammonia reactor (S-300) (Embodiment of fixed three catalyst beds)	62
Figure 4.26 Haldor Topsøe two-catalyst-bed ammonia reactor (US4181701)	63
Figure 4.27 Haldor Topsøe three catalyst beds ammonia reactor (US 6540971B2)	64
Figure 4.28 Uhde Low Energy ammonia process flow scheme	65
Figure 4.29 Dual Pressure ammonia synthesis	68
Figure 4.30 Uhde ammonia converters	69
Figure 4.31 Uhde 3-Bed ammonia converter—Ammonia content versus temperature	70
Figure 4.32 Dual Pressure process flow scheme	71
Figure 5.1 Effect of Natural gas price on ammonia product price	96
Figure 5.2 Effect of plant capacity on ammonia product net production cost	96
Figure 6.1 Effect of Natural gas price on ammonia product price	122 122
Figure 6.2 Effect of plant capacity on ammonia product net production cost Figure 7.2 The Uhde Ammonia process steam system	133
Figure 7.3 Effect of Natural gas price on Ammonia product price	148
righte r.s Effect of Matural gas price of Antihonia product price	140

Appendix D Figures


Figure 5.1 (PFD 1 of 3): Process schematic for Casale process for Ammonia production	171
Figure 5.1 (PFD 2 of 3): Process schematic for Casale process for Ammonia production	172
Figure 5.1 (PFD 3 of 3): Process schematic for Casale process for Ammonia productiond	173
Figure 6.1 (PFD 1 of 3): Process schematic for PurifierTM process for Ammonia production	174
Figure 6.1 (PFD 2 of 3): Process schematic for PurifierTM process for Ammonia production	175
Figure 6.1 (PFD 3 of 3): Process schematic for PurifierTM process for Ammonia production	176
Figure 7.1 (PFD 1 of 3): Process schematic for Udhe's Dual pressure process for Ammonia	
production	177
Figure 7.1 (PFD 2 of 3): Process schematic for Udhe's Dual pressure process for Ammonia	
production	178
Figure 7.1 (PFD 3 of 3): Process schematic for Udhe's Dual pressure process for Ammonia	
production	179

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Writher IHS
Markit logos and trade names contained in this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

