

Plastic Recycling and Sustainability—a Process Economics Framework

PEP Review 2019-15 December 2019

RJ Chang Vice President

Jamie Lacson Associate Director

Process Economics Program

PEP Review 2019-15

Plastic Recycling and Sustainability—a Process Economics Framework

RJ Chang, Vice President **Jamie Lacsom,** Associate Director

Abstract

Recycle of plastic wastes is a war that our industry and global community must win. The Earth is groaning "I cannot breathe" due to the bulging landfills, and marine creatures are crying "you are killing me" with all the plastic litter in our riverways and oceans. Plastic recycling and sustainability must be a high priority for the petrochemical industry, environmental groups, non-profit organizations, and government regulators. In 2018, global production of five major plastics (PE, PP, PS, EPS, and PET) for packaging was around 112 million tons, which is expected to grow at 3.7% per year to reach 174 million tons by 2030 [1]. Yet, only about 14–18% was collected for recycle [2]. The unfortunate consequence is that the plastic waste will continue to pile up the landfills and pollute our water ways and oceans if the rate of plastic recycling does not increase dramatically and quickly.

In a recent study by IHS Markit titled "A Sea Change: Plastics Pathway to Sustainability [3]," the report identified the following major impediments to achieving higher recycle rate:

- Economics have not been established to enable viable recycling
- The plastic recycling industry is too fragmented and underdeveloped industry structure to allow more effective waste collection
- There are too few recycling processes that are robust, scalable, and economically viable
- There is not enough unbiased data to define the problem and measure progress

This review examines plastic recycling and sustainability from a process economics viewpoint to examine ways to remove barriers for significantly lifting the future recycle rates. We start by presenting a clear process economics framework to enable full analysis of plastic production and recycle value chain. Plastic recycling should be viewed as a proactive way to recover value, not only as a passive environmental pressure to reduce waste. To produce one ton of plastic, each step requires raw materials, energy, labor, and capital investment to convert a lower value feedstock to the highest value consumer products. Then due to poor waste collection infrastructure and lack of efforts or technologies to effectively and economically recycle plastics, most of the post consumer products end up in landfills or pollute our waterways and oceans. This is tremendous waste of resources and value that the chemical industry must try to recover for achieving circular economy.

To effect value recovery, we first examine all recycle options, including physical (mechanical) recycle to polymers, chemical or biological recycle to monomers or feedstocks, and energy recycle and discuss their relative merits. A significant increase in recycle rate can only be achieved if recycle economics are favorable and quality of recycled material is comparable to the virgin plastic. We select a few cases to compare economics of recycling plastic waste to polymers or monomers with production economics

of corresponding virgin materials. And if the recycle economics is not favorable, what changes in recycle infrastructure or what improvement in technology are needed to make it favorable in each case.

As the recycling rate and demand of recycled plastic picks up, it is going to reduce the demand of virgin plastics. We have derived a set of equations and create an Excel template to estimate the impact of future plastic recycling acceleration rate on demand growth rate of virgin plastic, which mainly depends on three parameters: 1) future total demand growth rate, 2) current recycle ratio, and 3) future plastic recycling acceleration rate. The template can be used to estimate the impact of recycling on future demand growth of all plastics regionally and globally under various scenarios. The template can also be used to estimate how much the recycling rate needs to be accelerated in order to achieve a government or industry recycle target. The same template also allows an estimate of leakage to the environment which is important to the regulators. In this review, we use PET recycling in the United States to demonstrate how the template can be used to estimate the impact of PET package recycling acceleration rate on the future demand of virgin PET and leakage to the environment under three scenarios: 1) a zero recycling growth rate scenario, 2) an EPR (enhanced producer responsibility) 30% recycle by 2030 scenario, and 3) ACC (American Chemistry Council) 100% recycle by 2040 scenario.

The economics framework and quantitative analysis provided in this review will facilitate an on-going discussion of plastic recycling leading to a more effective solution for the industry.

Contents

1	Executive Summary	7
2	Introduction	11
3	Plastic Recycle in a process economics framework	13
4	Factors affecting plastic recycle rates	25
5	Comparative Production Economics and CO ₂ emission of Physical Recycling	27
6	State of Plastics Recycling and Targets	38
7	Impact of Plastic Recycle on Future Demand Growth of Virgin Plastics	45
8	Energy Recovery	52
9	Bioplastics in the Recycling World	54
AP	PENDIX A: Methmatical equations for estimating impact of recycled plastic on the	
future demand of virgin Plastic		57
AP	PENDIX B: Impact of PET packaging recycling on virgin plastics and leakage to the	
environment under three scenario		60
APPENDIX C: Cited references		64

Tables

19
26
35
38
39
40
40
41
45
46
52
60
61
62

Figures

Figure 1: Plastic recycle- a process economics framework	13
Figure 2: Market value of selected feedstocks, monomers, and polymers	15
Figure 3: Plastic Recycling Life Cycle distribution	16
Figure 4: The "Missing Link" in the Plastic Circular Economy	16
Figure 5: Material Balance of Plastic Waste	17
Figure 6: Plastics Leakage to Environment	18
Figure 7: EPR (Extended Producer Responsibility) Scheme	19
Figure 8: Recycled vs. Virgin Plastic	25
Figure 9: Recycled plastic usage	26
Figure 10: Capital Intensity comparison of recycled PET (rPET) vs. Virgin PET (vPET) (\$/ton)	27
Figure 11: Production Economics Comparison of Recycled PET (rPET)vs. Virgin PET (vPET)	28
Figure 13: Comparison of capital intensity between recycled HDPE (rHDPE) vs. Virgin HDPE	
(vHDPE)	30
Figure 14: Production Economics Comparison of Recycled HDPE (rHDPE) vs. Virgin HDPE (vHDPE)	30
Figure 15: Comparison of CO ₂ Emission between recycled HDPE (rHDPE) vs. Virgin HDPE	
(vHDPE)	31
Figure 16: Capex comparison of PET monomers	33
Figure 17: Production Economics Comparison of Recycled BHET vs. Virgin MEG and PT	
(Q4 2018)	33
Figure 18: CO ₂ Émission comparison between chemically recycled BHET with virgin MEG	
and PTA n	34
Figure 19: Capital cost economics comparison	36
Figure 20: Production cost comparison	36
Figure 21: Global Recycle of Packaging Plastics in 2016	42
Figure 22: US EPA Packaging Plastics Recycle Rate 2012-2015 Compared with ACC	
2040 Target	43
Figure 23: Base case scenario- impact on future PET recycle rate and demand of virgin PET	47
Figure 24: EPR 30% by 2030 scenario- impact on future PET recycle rate an demand	
of virgin PET	48
Figure 25: ACC 100% by 2040 Scenario on future PET recycle rate and demand of virgin PET	49
Figure 26: Impact on total recycle rate (packaging + textile) under three scenarios	49
Figure 27: Impact of three scenarios of PET packaging recycling on future demand of virgin	
plastic 50	
Figure 28: Impact of increasing annual PET packaging recycle rate on total recycle rate and	
accumulated leakage	51
Figure 29: Drop in Replacement vs. Competing Material	54

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Writher IHS
Markit logos and trade names contained in this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2019, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

