Second Generation Biofuels

PEP Report 278A
December 2020

Girish Ballal
Director of Fuel and Chemical Processes

Process Economics Program
Contacts

Girish Ballal
Director of Fuel and Chemical Processes, Process Economics Program
girish.ballal@ihsmarkit.com

RJ Chang
Vice President, Process Economics Program
RJ.Chang@ihsmarkit.com
Abstract

With an intent to reduce the use of fossil fuels for energy production, renewable energy from biomass is being aggressively pursued by industry, academic researchers, and governments, to support the overall goal of decarbonization. First generation biodiesel, fatty acid methyl ester (FAME), was introduced about two decades ago. However, it faces limited demand growth potential because it can be blended with conventional fuels only in small proportions. Renewable diesel produced by hydroprocessing of bio-derived feedstock has recently emerged as the preferred option, with higher cetane number, high energy density, practically no oxygen content, and superior cold flow fuel properties. It can be used as a drop-in fuel or blended with petrodiesel in all proportions, in conventional internal combustion engines. A variety of renewable biomass sources have been utilized, including vegetable oils from agricultural crops, animal fats, and waste residues such as recycled cooking oils. The biofuels industry is intrinsically influenced by the environmental, social, and political factors. Growing societal support for sustainability initiatives and increasing government regulations targeting the environmental decarbonization goals are driving the growth of global biofuels industry. This report presents the techno-economic analysis of the four current industrial processes to produce renewable diesel by hydroprocessing. These processes are:

- Vegan™ process by Axens
- Ecofining™ process by UOP/Eni
- Hydroflex™ process by Haldor Topsoe
- NEXBTL™ process by Neste

The production economics assessment in this report is based on a US Gulf Coast location. However, an iPEP Navigator module (an excel-based computer costing model developed by IHS Markit) is attached with this report to allow a quick calculation of the process economics for three other major regions also—Germany, Japan, and China. For every process, the module also allows production economics to be reported in English or metric units in each region.

The technological and economic assessment of the processes is IHS Markit PEP’s independent interpretation of the companies’ commercial processes based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. IHS Markit PEP believes that they are sufficiently representative of the processes and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.
Contents

1 Introduction 7
2 Executive summary 9
 Industry review 9
 Environmental, social, and governance 9
 Supply and demand 9
 Technology review 12
 Renewable feedstocks 12
 Production technology 13
 Process economics 14
 Capital costs 15
 Production costs 16
 Environmental footprint 17
 Summary and conclusions 19
3 Industry review 21
 Environmental, social, and governance 21
 Government regulations 21
 Social and political factors 22
 Biodiesel supply and demand 24
 Biofuel prices 28
4 Technology review 30
 Renewable feedstocks 30
 Vegetable Oils 30
 Nonedible oils 31
 Animal fats 33
 Microalgae 33
 Biodiesel versus Renewable diesel 34
 Fatty acid methyl esters/Biodiesel 34
 Renewable/green diesel 36
 Hydrogenation/Hydrodeoxygenation 37
 Hydroisomerization 39
 Hydrocracking 44
 Commercial processes 47
 Vegan™ process by Axens 47
 Ecofining™ process by Eni/UOP 48
 NexBTL™ process by Neste 49
 Hydroflex™ process by Haldor Topsoe 51
 Patent overview 52
 Axens 52
 Eni/UOP 52
 Neste Oil 53
 Haldor Topsoe 55
5 VEGAN™ process by Axens 57
 Process description 57
 Section 100—Hydrodeoxygenation and pretreatment 57
 Section 200—Product separation 58
 Process discussion 65
 Feedstock 65
 By-products 65
 Reaction and product recovery 65
6 Ecofining™ process by Eni/UOP

Process description
Section 100—Hydrodeoxygenation and pretreatment
Section 200—Isomerization and Product Separation

Process discussion
Feedstock
By-products
Reaction and product recovery
Catalyst
Process waste effluents
Materials of construction

Cost estimates
Fixed capital costs
Production costs

Environmental footprint
Tables

Table 2.1 Production costs (metric units) comparison 15
Table 2.2 Comparison of environmental footprints 18
Table 3.1 Top 10 FAME biodiesel producers 27
Table 3.2 Top 10 renewable diesel producers 28
Table 4.1 Typical fatty acid composition of vegetable oils 30
Table 4.2 Fatty acid composition of waste cooking oil 31
Table 4.3 Waste cooking oil characteristics 31
Table 4.4 Fatty acid composition of nonedible oils 32
Table 4.5 Oil contents of seed and kernel of some nonedible plants 32
Table 4.6 Typical fatty acid composition of animal fats 33
Table 4.7 Typical fatty acid composition of various Microalgae species 34
Table 4.8 Typical fuel properties of petrodiesel and biodiesels 34
Table 4.9 Melting point and cetane numbers of linear paraffins 40
Table 5.1 Design basis and assumptions 59
Table 5.2 Stream summary 60
Table 5.3 Vegan process by Axens—Major equipment 67
Table 5.4 Vegan Process by Axens—Utilities summary 68
Table 5.5 Vegan process by Axens—Total capital investment 70
Table 5.6 Vegan process by Axens—Capital investment by section 71
Table 5.7 Vegan process by Axens—Production costs 72
Table 5.8 Environmental performance factors 76
Table 6.1 Design basis and assumptions 79
Table 6.2 Stream summary 80
Table 6.3 Ecofining process by UOP—Major equipment 88
Table 6.4 Ecofining process by UOP—Utilities summary 90
Table 6.5 Ecofining process by UOP—Total capital investment 92
Table 6.6 Ecofining process by UOP—Capital investment by section 93
Table 6.7 Ecofining process by UOP—Production costs 94
Table 6.8 Environmental performance factors 98
Table 7.1 Design basis and assumptions 101
Table 7.2 Stream summary 102
Table 7.3 HydroFlex Process Haldor Topsoe—Major equipment 110
Table 7.4 HydroFlex process Haldor Topsoe—Utilities summary 112
Table 7.5 HydroFlex process Haldor Topsoe—Total capital investment 114
Table 7.6 HydroFlex process Haldor Topsoe—Capital investment by section 115
Table 7.7 HydroFlex process Haldor Topsoe—Production cost 116
Table 7.8 Environmental performance factors 120
Table 8.1 Design bases and assumptions 123
Table 8.2 Stream summary 124
Table 8.3 NexBTL process by Neste—Major equipment 131
Table 8.4 NexBTL process by Neste—Utilities summary 133
Table 8.5 NexBTL Process by Neste—Total capital investment 135
Table 8.6 NexBTL process by Neste—Capital investment by section 136
Table 8.7 NexBTL process by Neste—Production costs 137
Table 8.8 Environmental performance factors 141
Figures

Figure 2.1 FAME capacity by regions
Figure 2.2 Renewable diesel capacity by regions
Figure 2.3 Bio-derived fuels demand share
Figure 2.4 Renewable diesel production by hydproprocessing
Figure 2.5 Comparison of capital costs
Figure 2.6 Comparison of production costs
Figure 2.7 Comparison of CO₂ emissions
Figure 2.8 Comparison of water usage requirement
Figure 2.9 Comparison of wastewater generation
Figure 3.1 Global demand for FAME biodiesel
Figure 3.2 Global demand for renewable diesel and bio jet fuel
Figure 3.3 Bio-derived fuels demand share
Figure 3.4 FAME capacity by regions
Figure 3.5 Renewable diesel capacity by regions
Figure 3.6 FAME biodiesel prices in Northwest Europe
Figure 3.7 Monthly bio feedstock prices
Figure 3.8 Long-term yearly bio feedstock prices
Figure 3.9 FAME biodiesel transesterification reaction
Figure 3.10 FAME biodiesel production process
Figure 3.11 Hydrodeoxygenation reaction
Figure 3.12 Theoretical hydrogen consumption for some vegetable oils
Figure 3.13 Gctane number and freezing points of long chain paraffins
Figure 3.14 Pour point of C₁₆ paraffins as a function of isomerization conversion
Figure 3.15 Reaction scheme for hydroisomerization of long chain alkanes
Figure 3.16 Effect of reaction conditions on cold flow properties
Figure 3.17 Effect of reaction conditions on product composition and cetane numbers
Figure 3.18 Degree of isomerization as a function of carbon number
Figure 3.19 Mechanism of hydrocracking
Figure 3.20 Molar carbon number distribution from two hydrocracking catalysts
Figure 3.21 Vegan process by Axens
Figure 3.22 Ecofining by Eni/UOP
Figure 3.23 NexBTL process by Neste
Figure 3.24 Hydroflex process by Haldor Topsoe
Figure 4.1 Effect of plant capacity on capital costs
Figure 4.2 Effect of plant capacity on production costs
Figure 4.3 Effect of feedstock price on production costs
Figure 5.1 Effect of plant capacity on capital costs
Figure 5.2 Effect of plant capacity on production costs
Figure 5.3 Effect of feedstock price on production costs
Figure 6.1 Effect of plant capacity on capital costs
Figure 6.2 Effect of plant capacity on production costs
Figure 6.3 Effect of feedstock price on production costs
Figure 7.1 Effect of plant capacity on capital costs
Figure 7.2 Effect of plant capacity on production costs
Figure 7.3 Effect of feedstock price on production costs
Figure 8.1 Effect of plant capacity on capital costs
Figure 8.2 Effect of plant capacity on production costs
Figure 8.3 Effect of feedstock price on production costs

Appendix D Figures

Figure 5.1.1 Vegan process by Axens
Figure 6.1.1 Ecofining process by UOP/Eni
Figure 7.1.1 Hydroflex process by Haldor Topsoe
Figure 8.1.1 NexBTL process by Neste