

Floating Methanol Production

PEP Review 2020-05 December 2020

Praveer Joshi Associate Director

Process Economics Program

PEP Review 2020-05

Floating Methanol Production

Praveer Joshi, Associate Director

Abstract

This review examines the technology and economics of a methanol producing plant, which is built on a floating production, storage, and offloading (FPSO) vessel used in oil and gas production.

Conventionally, methanol is produced from natural gas (NG) through steam-methane reforming (SMR) or autothermal reforming (ATR). The reforming of NG produces a mixture of CO and H₂ (synthesis gas), which is subsequently converted to methanol. Methanol can also be produced by direct hydrogenation of CO₂. There is another process for methanol production, which involves steam-methane reforming with CO₂. This steam-methane-CO₂ reforming technology is also referred to as Steam-CO₂ Combined Reforming (SCR). As SCR consumes CO₂ as a raw material, the CO₂-rich gas produced on FPSO can be utilized without a CO₂ separation unit. The raw material used is the by-product gas and steam generated during the heat recovery phase from the process system.

The configuration or baseplate of the process analyzed in this review is extracted from a paper titled "*The process design and simulation for the methanol production on the FPSO (floating production, storage and off-loading) system*". Authored by Won Seok Kim et al., this paper was published in *Chemical Engineering Research and Design* (2014). The evaluation process entails a series of steps involving a brief process review, followed by more detailed parametric information about the technology, such as process operation key conditions, process description, material and energy balance, equipment sizes, utilities consumption, and a process flowsheet. Process economics are presented in the latter part of the review.

The floating methanol production technology is a two-step process. The first step is the production of H_2 -rich syngas by the endothermic steam-methane reforming reaction over a Ni-based catalyst, in an externally heated tubular reformer. The CO₂-rich associated gas produced on the FPSO is cleaned and successively fed to a prereformer and reformer, along with steam in a molar ratio of 1 to 2. The syngas, thus produced, is then fed to the methanol synthesis reactor. The crude methanol stream exiting the reactor is cooled, scrubbed, and purified using distillation columns. The purified methanol is finally sent to storage.

In the end section of the review, the economics of a floating methanol production unit are presented. IHS Markit PEP's estimates indicate that the net production cost of methanol is 9.06 ¢/lb. The production of methanol on an FPSO vessel provides the benefit of reducing flaring and could also result in increased oil production capacity. The economic impact of increased oil production, however, has not been accounted for in the calculation of the economics.

Contents

1	Introduction	6
	Scope of study	6
2	Summary	8
	Commercial overview	8
	Technology review	9
	Natural gas based technologies	10
	Methanol properties	10
	Technical aspect	11
	Economic aspect	12
3	Process and economics	14
	Introduction	14
	Chemistry and technology background	14
	Step 1: Principal reformer syngas generation reaction	14
	Step 2: Principal methanol converter synthesis reaction	14
	Steam reforming	16
	Feedstock prereforming treatment	17
	Prereforming	17
	Methanol synthesis	18
	Design basis	19
	Methanol properties	19
	Process design basis	20
	Process description	21
	Overall flow scheme	21
	Stranded gas and separation	22
	Syngas production	22
	Prereforming	22
	Steam-CO ₂ Combined Reforming	23
	Methanol production	24
	Methanol synthesis reaction	24
	Separation and purification	26
	Recycle and vent process	27
	RWGS (Reverse water-gas shift) reaction	27
	Recycle optimization	27
	FPSO related considerations	28
	Materials of construction	28
	Heat material balance tables	29
	Utility summary	36
	Cost estimation	36
	Fixed capital cost	37
	Waste treatment	37
	Production cost	39
	Economic discussion	41
	Design conditions	44

Tables

Table 2.1 Methanol production cost	12
Table 2.1 Methanol production cost	10
Table 3.1 Specification of federal grade AA methanol	19
Table 3.2 Design basis	20
Table 3.3 Parameter values for the steady-state kinetic model	26
Table 3.4 PFR sizing details	26
Table 3.5 Material balance (design case)	30
Table 3.6 Major equipment list	35
Table 3.7 Utility summary	36
Table 3.8 Total capital investment cost	38
Table 3.9 Methanol production cost	39
Table 3.10 Carbon and water footprint	40
Table 3.11 Methanol production cost by different technologies from PEP Report 43F (2019)	42

Figures

Figure 2.1 Global methanol production by regions	8
Figure 2.2 Global methanol capacity by region	9
Figure 2.3 Schematic of methanol production process	10
Figure 2.4 Process Block Diagram of FPSO methanol process	12
Figure 3.1 Schematic of typical H ₂ S removal system for syngas cleanup	17
Figure 3.2 Typical methanol synthesis reactor schematic	18
Figure 3.3 Process Block Diagram of FPSO methanol process	21
Figure 3.4 Concept of FPSO methanol process	29

Figures for Appendix C

Figure C.1 PFD for Floating Methanol Production (1 of 2)	52
Figure C.1 PFD for Floating Methanol Production (2 of 2)	53

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Histither IHS
Markit logos and trade names contained in this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright© 2020, IHS Markit[™]. All rights reserved and all intellectual property rights are retained by IHS Markit.

