Bioethylene by Ethanol Dehydration

PEP Report 29L
December 2021

Girish Ballal
Director, Fuel and Chemical Processes

Process Economics Program
Contacts

Girish Ballal
Director, Fuel and Chemical Processes
girish.ballal@ihsmarkit.com

Michael Arné
Vice President, Process Economics Program
michael.erne@ihsmarkit.com
PEP Report 29L
Bioethylene by Ethanol Dehydration
Girish Ballal, Director, Fuel and Chemical Processes

Abstract

The growing concerns about environmental carbon emissions and the resulting climate change issues have effected a concerted effort to reduce these emissions from the production of industrial chemicals and fuels. There is also an impetus to reduce the carbon emissions in a broader sense, including carbon emissions related to the production of feedstock, the so-called life-cycle carbon emissions. The use of bio-based feedstocks often results in lower carbon emissions than the use of petroleum-based feedstocks. Consequently, the use of bio-based processes is receiving increasing attention as a contributor to the decarbonization efforts in the industrial sector.

Ethylene is the cornerstone of the modern petrochemical industry. It has myriad end uses such as polyethylene (PE), polyvinyl chloride (PVC), ethylene glycol (EG), and others. Almost all ethylene is currently produced by thermal steam cracking of fossil-based feedstock such as naphtha, ethane, or propane. Bioethylene is produced from bio-based feedstock and is chemically identical to fossil-based ethylene. This report presents a technoeconomic analysis of three current industrial processes to produce bioethylene by ethanol dehydration. These processes are

- Ethanol dehydration process by Braskem
- ATol™ process by Axens
- Hummingbird™ process by TechnipFMC

All three processes result in significant reductions in carbon emissions compared with conventional industrial ethylene production. The most carbon-efficient bioethylene process leads to a reduction of more than 70%, relative to conventional light naphtha cracking.

The production economics assessment in this report is based on a US Gulf Coast location. However, an iPEP Navigator module (an Excel®-based computer costing model developed by IHS Markit) is attached with this report to allow a quick calculation of the process economics for three other major regions: Germany, Japan, and mainland China. The module also allows production economics to be reported in English or metric units in each region.

This technological and economic assessment is PEP’s independent interpretation of the companies’ commercial processes. It is based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part of the actual plant configuration.
Contents

1. **Introduction**
2. **Executive summary**
 - Industry review
 - Environmental, social, and governance
 - Supply and demand
 - Technology review
 - Renewable feedstocks
 - Production technology
 - Process economics
 - Capital costs
 - Production costs
 - Environmental footprint
3. **Industry review**
 - Environmental, social, and governance
 - Supply and demand
 - Feedstock and product prices
4. **Technology review**
 - Renewable feedstocks
 - Reaction chemistry
 - Reactions
 - Catalyst
 - Industrial considerations
 - Commercial processes
 - Ethanol dehydration process by Braskem
 - ATOL™ process by Axens/Total
 - Hummingbird™ process by TechnipFMC/BP
 - Ethanol-to-ethylene process by Petron Scientific
 - Patents overview
5. **Bioethylene process by Braskem**
 - Process description
 - Section 100—Pretreatment and dehydration
 - Section 200—Product recovery
 - Section 300—Refrigeration
 - Process discussion
 - Feedstock
 - By-products
 - Reaction and product recovery
 - Catalyst
 - Process waste effluents
 - Materials of construction
 - Cost estimates
 - Fixed capital costs
 - Production costs
6. **ATOL™ process by Axens**
 - Process description
 - Section 100—Pretreatment and dehydration
 - Section 200—Product recovery
Tables

Table 2.1 Production costs (metric units) comparison 14
Table 2.2 Comparison of environmental footprints 17
Table 3.1 Top bioethylene producers 26
Table 5.1 Design basis and assumptions 44
Table 5.2 Stream summary 45
Table 5.3 Major equipment 49
Table 5.4 Utilities summary 51
Table 5.5 Total capital investment 53
Table 5.6 Capital investment by section 54
Table 5.7 Variable costs 55
Table 5.8 Production costs 56
Table 5.9 Production costs metric units 57
Table 5.10 Environmental performance factors 60
Table 6.1 Design basis and assumptions 64
Table 6.2 Stream summary 65
Table 6.3 Major equipment 69
Table 6.4 Utilities summary 70
Table 6.5 Total capital investment 72
Table 6.6 Capital investment by section 73
Table 6.7 Variable costs 74
Table 6.8 Production costs 75
Table 6.9 Production costs metric units 76
Table 6.10 Environmental performance factors 79
Table 7.1 Design basis and assumptions 83
Table 7.2 Stream summary 84
Table 7.3 Major equipment 88
Table 7.4 Utilities summary 90
Table 7.5 Total capital investment 92
Table 7.6 Capital investment by section 93
Table 7.7 Variable costs 94
Table 7.8 Production costs 95
Table 7.9 Production costs metric units 96
Table 7.10 Environmental performance factors 99

Figures

Figure 2.1 Bioethylene capacity by regions 10
Figure 2.2 Bioethylene by ethanol dehydration 12
Figure 2.3 Comparison of capital costs 15
Figure 2.4 Comparison of production costs 16
Figure 2.5 Comparison of CO₂ emissions 17
Figure 2.6 Comparison of water usage requirement 18
Figure 2.7 Comparison of wastewater generation 18
Figure 2.8 Comparison of carbon footprint with conventional technology 19
Figure 2.9 Comparison of water footprint with conventional technology 20
Figure 3.1 Life-cycle carbon emission for Braskem bio polyethylene 23
Figure 3.2 Ethanol production capacity by location 24
Figure 3.3 Global ethylene production capacity 24
Figure 3.4 Global bioethylene production capacity 25
Figure 3.5 Bioethylene capacity by location 26
Figure 3.6 Ethanol prices by location 27
Figure 3.7 Ethanol prices by location 28
Figure 4.1 Ethanol dehydration mechanism 31
Figure 4.2 Ethanol dehydration process by Braskem 33
Figure 4.3 Simplified AToI™ process flow diagram 34
Figure 4.4 Hummingbird™ process by TechnipFMC/BP 35
Figure 4.5 Hummingbird™ process operating conditions 36
Figure 5.1 Effect of plant capacity on capital costs 58
Figure 5.2 Effect of plant capacity on production costs 59
Figure 5.3 Effect of feedstock price on production costs 60
Figure 6.1 Effect of plant capacity on capital costs 77
Figure 6.2 Effect of plant capacity on production costs 78
Figure 6.3 Effect of feedstock price on production costs 79
Figure 7.1 Effect of plant capacity on capital costs 97
Figure 7.2 Effect of plant capacity on production costs 98
Figure 7.3 Effect of feedstock price on production costs 99

Appendix D Figures

Figure 5.1A Ethanol Dehydration process by Braskem 115
Figure 5.2A Ethanol Dehydration Process by Braskem (Refrigeration System) 116
Figure 6.1A AToI™ Process by Axens 117
Figure 7.1A Hummingbird™ Process by TechnipFMC 118