

Bioethylene by Ethanol Dehydration

PEP Report 29L December 2021

Process Economics Program

Contacts

Girish Ballal

Director, Fuel and Chemical Processes girish.ballal@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Report 29L

Bioethylene by Ethanol Dehydration

Girish Ballal, Director, Fuel and Chemical Processes

Abstract

The growing concerns about environmental carbon emissions and the resulting climate change issues have effected a concerted effort to reduce these emissions from the production of industrial chemicals and fuels. There is also an impetus to reduce the carbon emissions in a broader sense, including carbon emissions related to the production of feedstock, the so-called life-cycle carbon emissions. The use of bio-based feedstocks often results in lower carbon emissions than the use of petroleum-based feedstocks. Consequently, the use of bio-based processes is receiving increasing attention as a contributor to the decarbonization efforts in the industrial sector.

Ethylene is the cornerstone of the modern petrochemical industry. It has myriad end uses such as polyethylene (PE), polyvinyl chloride (PVC), ethylene glycol (EG), and others. Almost all ethylene is currently produced by thermal steam cracking of fossil-based feedstock such as naphtha, ethane, or propane. Bioethylene is produced from bio-based feedstock and is chemically identical to fossil-based ethylene. This report presents a technoeconomic analysis of three current industrial processes to produce bioethylene by ethanol dehydration. These processes are

- Ethanol dehydration process by Braskem
- ATolTM process by Axens
- HummingbirdTM process by TechnipFMC

All three processes result in significant reductions in carbon emissions compared with conventional industrial ethylene production. The most carbon-efficient bioethylene process leads to a reduction of more than 70%, relative to conventional light naphtha cracking.

The production economics assessment in this report is based on a US Gulf Coast location. However, an iPEP Navigator module (an Excel[®]-based computer costing model developed by IHS Markit) is attached with this report to allow a quick calculation of the process economics for three other major regions: Germany, Japan, and mainland China. The module also allows production economics to be reported in English or metric units in each region.

This technological and economic assessment is PEP's independent interpretation of the companies' commercial processes. It is based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part of the actual plant configuration.

Contents

4	Introduction	7
1		1
2	Executive Summary	9
	Environmental social and governance	9
	Supply and domand	9
		9
	Renewable feedeteeke	10
	Renewable recusious	10
	Process economics	12
	Capital costs	12
	Droduction costs	14
	Environmental feetprint	15
		10
2		20
3	Industry review	22
	Environmental, social, and governance	22
	Supply and demand	23
		20
4	Renewable feedeteeke	29
	Reliewable leeuslocks	29
	Reaction	30
	Catalyst	30
	Calalysi Industrial considerations	31
		32
	Ethanol dobudration process by Prockern	
		33
	ATOL PROCESS BY AXERS/TOLAL Humminghing TM process by Technin EMC/PD	34
	Ethenel to othylene process by TechniprinC/DP	30
	Ethanol-to-ethylene process by Petron Scientific	30
5	Picethylene process by Procker	37
5	Bioennylene process by Braskelli Brosses deparintion	42
	Section 100 Distractment and dehydration	42
	Section 200 Preduct recovery	42
	Section 200 – Product recovery	42
	Process discussion	45
	Flocess discussion	40
	By-products	40
	By-products Reaction and product recovery	47
	Catalyst	47
	Process waste effluents	41
	Materials of construction	40
	Cost estimates	-0 51
	Fixed capital costs	52
	Production costs	52
	Environmental footprint	52 60
6		60
0	Process description	62
	Section 100—Pretreatment and debudration	62
	Section 200-Product recovery	02
		02

2

Section 300—Product recovery	63
Process discussion	67
Feedstock	67
By-products	67
Reaction and product recovery	67
Catalyst	68
Process waste effluents	68
Materials of construction	68
Cost estimates	71
Fixed capital costs	71
Production costs	72
Environmental footprint	79
7 Hummingbird [™] process by TechnipFMC	81
Process description	81
Section 100—Pretreatment and dehydration	81
Section 200—Product recovery	81
Section 300—Refrigeration	82
Process discussion	85
Feedstock	85
By-products	86
Reaction and product recovery	86
Catalyst	86
Process waste effluents	87
Materials of construction	87
Cost estimates	90
Fixed capital costs	90
Production costs	91
Environmental footprint	99
Appendix A—Cited references	101
Appendix B—Patent summaries	105
Appendix C—Design and cost basis	110
Appendix D—Process flow diagrams	114

Tables

Table 2.1 Production costs (metric units) comparison	14
Table 2 2 Comparison of environmental footprints	17
Table 3.1 Top bioethylene producers	26
Table 5.1 Design basis and assumptions	44
Table 5.2 Stream summary	45
Table 5.3 Major equipment	49
Table 5.4 Utilities summary	51
Table 5.5 Total capital investment	53
Table 5.6 Capital investment by section	54
Table 5.7 Variable costs	55
Table 5.8 Production costs	56
Table 5.9 Production costs metric units	57
Table 5.10 Environmental performance factors	60
Table 6.1 Design basis and assumptions	64
Table 6.2 Stream summary	65
Table 6.3 Major equipment	69
Table 6.4 Utilities summary	70
Table 6.5 Total capital investment	72
Table 6.6 Capital investment by section	73
Table 6.7 Variable costs	74
Table 6.8 Production costs	75
Table 6.9 Production costs metric units	76
Table 6.10 Environmental performance factors	79
Table 7.1 Design basis and assumptions	83
Table 7.2 Stream summary	84
Table 7.3 Major equipment	88
Table 7.4 Utilities summary	90
Table 7.5 Total capital investment	92
Table 7.6 Capital investment by section	93
Table 7.7 Variable costs	94
Table 7.8 Production costs	95
Table 7.9 Production costs metric units	96
Table 7.10 Environmental performance factors	99

Figures

Figure 2.1 Bioethylene capacity by regions	10
Figure 2.2 Bioethylene by ethanol dehydration	12
Figure 2.3 Comparison of capital costs	15
Figure 2.4 Comparison of production costs	16
Figure 2.5 Comparison of CO ₂ emissions	17
Figure 2.6 Comparison of water usage requirement	18
Figure 2.7 Comparison of wastewater generation	18
Figure 2.8 Comparison of carbon footprint with conventional technology	19
Figure 2.9 Comparison of water footprint with conventional technology	20
Figure 3.1 Life-cycle carbon emission for Braskem bio polyethylene	23
Figure 3.2 Ethanol production capacity by location	24
Figure 3.3 Global ethylene production capacity	24
Figure 3.4 Global bioethylene production capacity	25
Figure 3.5 Bioethylene capacity by location	26
Figure 3.6 Ethanol prices by location	27

00
28
31
33
34
35
36
58
59
60
77
78
79
97
98
99

Appendix D Figures

Figure 5.1A Ethanol Dehydration process by Braskem	115
Figure 5.2A Ethanol Dehydration Process by Braskem (Refrigeration System)	116
Figure 6.1A ATol [™] Process by Axens	117
Figure 7.1A Hummingbird [™] Process by TechnipFMC	118

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient dor any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

