

Crude Oil Conversion to Chemicals

PEP Report 303D December 2021

Process Economics Program

Contacts

Soumitro Nagpal

Executive Technical Director soumitro.nagpal@ihsmarkit.com

Michael Arné

Director, Process Economics Program michael.arne@ihsmarkit.com

PEP Report 303D

Crude Oil Conversion to Chemicals

Soumitro Nagpal, Executive Technical Director

Abstract

Crude oil refineries are being designed for increasing levels of chemicals production. Some of the recently commissioned large COTC projects convert 30–55% of feed crude to chemicals. These complexes have a much higher conversion capacity to enhance the production of olefins and light and heavy naphtha from the heavier fractions of the crude barrel. Complexes are even being planned, with almost no fuels production and conversion to chemicals of 70% or higher.

This trend is being driven by the higher and more stable price margins of petrochemicals relative to transportation fuels and the diminishing demand for fuels. However, a higher conversion to high-value products comes with a cost. These high conversion complexes are capital intensive and the impact of increasing crude conversion on capital investment and production economics is not well established. This report tries to address this gap and answer the following questions.

- Can margins and ROI rise all the way to full crude conversion to chemicals with no liquid fuels production, or is there a point of diminishing return?
- What is the impact of refinery crude capacity on margins and ROI for high-conversion complexes?
- What is the impact of chemical price margins over fuels and crude oil on these trends?

This report looks at four refinery configurations with progressively higher levels of integration and conversion to chemicals starting from Arab Light crude oil using resid, gasoil, and distillate hydrocracking conversion technologies. Each refinery configuration is integrated with an associated light naphtha/ C_2 - C_4 MFSC, heavy naphtha reforming, and an aromatics block. The conversion of crude to chemicals for these cases ranges from 27% to 76% on a feed crude basis. A fuel-only configuration is included in the analysis and is used as a base case for comparison. SMR-based hydrogen generation is considered for all the cases to meet refinery hydrogen demand.

The analysis presents unit-level detail of each integrated refinery configuration. Intermediate and final product yields, and unit level and complex-wide utility consumptions are estimated and compared. Based on this we develop ISBL and OSBL investment costs, production economics, margins, and ROI for each configuration for USGC and mainland China locations. Impact of crude capacity, in the range of 5.8–20 MMtpa, which is equivalent to 116,000–400,000 b/d, on production economics is also presented.

Sensitivity to chemical product price variations vis-à-vis fuel product and raw material prices of the margin and ROI trends with increasing crude conversion to chemicals are examined.

Contents

1	Introduction	9
2	Summary	11
	Configurations	12
_	Results	12
3	Industry review	15
	Major COTC projects	19
	Zhejiang Petroleum and Chemicals	19
	Hengli Petrochemicals	21
	Shenghong Petrochemical	22
	Shandong Yulong Petrochemical	22
	PetroChina China-Venezuela Guangdong Petrochemical (Jieyang project)	23
	Hengyl PIVIB Refinery and Petrochemical Project (Hengyl-Brunel project)	24
	Conliguration companison	24
	Carbon rejection ungrading	20
		20
	Steam cracker	25
	Hydrogen plant	25
	Global scenario	20
	Northeast Asia and mainland China	28
	The Middle East	29
	India and Southeast Asia	30
	North America	32
	Europe	33
	Refinerv closures	33
4	Technology review	34
	Pathways to chemicals	34
	Crude selection	36
	Upgrading the bottom-of-the-barrel	41
	Fluid catalytic cracking	41
	ARDS-RFCC	41
	VRDS-RFCC	43
	Delayed coker	45
	Ebullated bed hydrocracking	45
	Slurry hydrocracking	45
	Catalyst	48
	Chevron Lummus Global LC-SLURRY technology	50
	Eni Slurry Technology	51
	Gasoil hydrocracking in max naphtha mode	52
	Hydroprocessing catalyst selection	53
	Switching from diesel to naphtha production	54
	Distillate hydrocracking	57
	Naphtha reforming for max aromatics	59
	Reforming Catalysts	60
	Nonecular management approacnes	65
		65
	NDN N-UUI Tatal Patrachamicale/LIOP Olafin Conversion Process	60
	Sinopoe elefine estelutio eracking process	66
	Sinoped olemns catalytic cracking process	00

Steam cracker and aromatics complex feed optimization	66
Naphtha cut-point	66
Reverse isomerization	67
UOP MaxEne Process	67
Steam cracker by-products recovery	67
Split-flow catalytic reforming	67
Aromatics complex developments	68
Paraxylene via toluene methylation	68
Liquid-phase xylene isomerization	68
Dehydrogenation and olefins interconversion	69
C_3/C_4 dehydrogenation	69
Lummus Olefins Conversion Technology	70
Direct crude conversion to chemicals	70
Configuration studies	70
Fluor	/1
Lummus technology	74
Saudi Aramco-Chevron Lummus Global	75
	(/
Bechtel	83
Reliance MCC-based oil to chemicals configuration	84
Other studies	85
5 High conversion crude to chemicals configurations	0 8
Basis of study	86
Case-1	88
Case-2	92
Case 4 (full conversion case)	93
Case Q (fuels only ease)	93
Case-0 (Idels-Oilly Case)	93
Investments costs	94
Carbon dioxide emissions	99
6 Production economics	101
Basis of estimate	103
Results and discussions	103
Sensitivity to chemicals price/margin	111
Demand saturation	111
Annendix A—Cited references	11/
Annendix B—Variable cost tables	110
Appendix C—Block flow diagrams	122
 Configuration studies Fluor Lummus technology Saudi Aramco-Chevron Lummus Global UOP Bechtel Reliance MCC-based oil to chemicals configuration Other studies 5 High conversion crude to chemicals configurations Basis of study Case-1 Case-2 Case-3 Case-4 (full conversion case) Case-0 (fuels-only case) Configuration comparison Investments costs Carbon dioxide emissions 6 Production economics Basis of estimate Results and discussions Sensitivity to chemicals price/margin Demand saturation Appendix A—Cited references Appendix A—Cited references Appendix C—Block flow diagrams 	70 77 74 75 77 75 75

Tables

Table 5.1 Basis of study summary	88
Table 5.2 CDU-VDU feed and product flows and properties	88
Table 5.3 Case-1 configuration hydrogen balance	90
Table 5.4 Case-1 configuration units' capacity, number of trains, and ISBL capex summary	91
Table 5.6 Overall fuel gas balance	98

Figures

Figure 3.1 Indicative global refinery utilization	16
Figure 3.2 Fuels and petrochemicals demand projections	17
Figure 3.3 Planned refinery crude processing capacity additions (up to 2025)	18
Figure 3.4 Global refinery conversion unit capacity trends (1990–2018)	19
Figure 3.5 Configuration comparison—Petrochemicals yield versus crude capacity	26
Figure 3.6 Chinese COTC conversion and petrochemicals unit capacity	27
Figure 3.7 Chinese COTC primary chemicals production capacities	28
Figure 3.8 Rajasthan refinery project nears completion—A few images	31
Figure 4.1 Refinery integration levels	35
Figure 4.2 Pathways from crude oil to chemicals	35
Figure 4.3 Global refinery integration levels and nature of integration	36
Figure 4.4 Crude quality and distillation product yields for a range of light to heavy crudes	38
Figure 4.5 Straight-run naphtha and diesel properties	39
Figure 4.6 Hydrogen content of crude fractions	39
Figure 4.7 Sulfur content of crude distillate fractions	40
Figure 4.8 Conradson carbon residue and metals content in crude fractions	40
Figure 4.9 ARDS-RFCC-based refinery configuration	44
Figure 4.10 Operating range of fixed, ebullated, and entrained slurry bed hydroprocessing	44
Figure 4.11 Uniflex performance with integrated distillate hydrotreating	49
Figure 4.12 Uniflex process flow scheme with heavy products recycle	49
Figure 4.13 GLC LC-SLURRY process flow scheme with integrated hydrotreater	51
Figure 4.14 Yield comparison of bottom-of-barrel upgrading options	51
Figure 4.15 Impact of relative strength of catalyst acid versus hydrogenation function on product slate	55
Figure 4.16 Feed specificity of zeolite versus amorphous silica-alumina catalysts	56
Figure 4.17 Impact of zeolite content and reaction temperature on naphtha yields from UCO	57
Figure 4.18 Impact of pressure on equilibrium conversion of C ₆ –C ₇ molecules in reforming processes	62
Figure 4.19 Impact of temperature on equilibrium conversion of C_6-C_8 molecules in	
reforming processes	63
Figure 4.20 Impact of temperature on equilibrium conversion of C ₈ molecules in reforming processes	64
Figure 4.21 C ₅ + reformate yield loss with increasing operating severity required to raise aromatic yield	65
Figure 4.22 Fluor study, base-case configuration	72
Figure 4.23 Fluor study, refinery product vields	72
Figure 4.24 Fluor study, gross margin to investment ratio for various chemical yield levels	73
Figure 4.25 Fluor study, IRR for various configuration types and chemical yield levels	74
Figure 4.26 Lummus technology-McDermott Refinery-Petrochemicals integration	75
Figure 4.27 Saudi Aramco-CLG published TC2C process configurations	77
Figure 4.28 UOP integration study—Base case and Case-3 refinery configurations	81
Figure 4.29 UOP integration study—Chemical vields and hydrogen and natural gas consumption	82
Figure 4.30 UOP integration study—Relative investment and net cash margins	82
Figure 4.31 UOP study—FCC-based refinery configuration with mixed dehydro and OCP	83
Figure 4.32 Bechtel study economics of increasing refinery-petchem integration for grassroots	
complexes in India	84
Figure 4.33 Reliance's MCC-based oil to chemicals concept configuration	85
Figure 5.6 Conversion and treating unit capacities	95
Figure 5.7 Primary chemicals production capacity	96
Figure 5.8 Liquid fuel and chemical vields for the various cases	97
Figure 5.9 Hydrogen demand and major producers	98
Figure 5.10 ISBL and TFC investments for the various cases	99
Figure 5.11 Breakdown of ISBL capex for the major processing blocks	100
Figure 5.12 Variation in Case-4 ISBL and TFC capex with crude capacity	101
Figure 5.13 Carbon footprint	102
Figure 6.1 Net margin for Case-0 to Case-4 at 20 MMtpa crude capacity	109
Figure 6.2 ROI as percentage of TFC for Case-0 to Case-4	109
Figure 6.3 Projected TFC investment versus gross margin (Case-0 to Case-4)	110

Figure 6.4 Net margin and ROI for full conversion Case-4 at various crude capacities	110
Figure 6.5 Net margin and ROI sensitivity to 10% increase in chemical prices (2015-19	
average price)	112
Figure 6.6 World primary petrochemicals demand growth versus COTC production capacity	113

Appendix C Diagrams

Figure 5.1 Configuration BFD and overall feed and product summary for Case-0, fuels-only refiner	ry 123
Figure 5.2 Configuration BFD and overall feed and product summary for Case-1	124
Figure 5.3 Configuration BFD and overall feed and product summary for Case-2	125
Figure 5.4 Configuration BFD and overall feed and product summary for Case-3	126
Figure 5.5 Configuration BFD and overall feed and product summary for full conversion Case-4	127

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient dor any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

