

Hydrogen from Natural Gas with Carbon Capture

PEP Review 2021-15 December 2021

Dipti Dave Associate Director

Contributions by Rajiv Narang Executive Director

Process Economics Program

Contacts

Dipti Dave

Associate Director, Intermediate Organic Chemicals dipti.dave@ihsmarkit.com

Rajiv Narang

Executive Director rajiv.narang@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Review 2021-15

Hydrogen from Natural Gas with Carbon Capture

Contributions by **Rajiv Narang**, Executive Director **Dipti Dave**, Associate Director, Intermediate Organic Chemicals

Abstract

Hydrogen (H₂) is considered to be a potentially disruptive technology for energy transition. Because of this, considerable attention has been directed to carbon capture and sequestration (CCS) as applied to large-scale H₂ production via steam methane reforming (SMR) of natural gas. This is sometimes known as "blue" H₂.

In this report, we examine the technology and economics of SMR-based H₂ production of 90 million standard cubic feet per day (MMscf/d), equivalent to 100,500 Nm³/hr of the product, without and with CCS. Our CCS case assumes 90% capture of carbon dioxide (CO₂) emissions from the SMR process as well as the heat and power inputs required for carbon capture and compression, namely, Scope 1 plus Scope 2. This is achieved via an on-site noncondensing steam turbine and generation system.

We have conducted our analysis assuming new stand-alone plant construction for H_2 production. We found that by adding CCS and compression to an SMR unit, with 90% of CO₂ captured, adds \$0.68/kg to the net production cost of H_2 from natural gas.

Contents

1	Introduction	6
2	Summary	7
	Hydrogen production by steam reforming of natural gas	7
	Process economics results	9
	Production costs	10
	Industry status	10
	Demand	11
3	Process review—Hydrogen plant base case	13
	Hydrogen from natural gas by steam methane reforming	13
	Process description	13
	Process discussion	21
	Feedstock	21
	Prereforming	22
	Natural gas-steam blending	22
	Reforming	22
	By-product steam/start-up steam boiler	23
	Reformer gas shifting	23
	Hvdrogen product	23
	Waste streams	24
	Process energy efficiency	24
	Materials of construction	24
4	Carbon dioxide capture	30
1	Carbon dioxide sources in hydrogen production	30
	Carbon dioxide capture technology	31
	Solvent-based carbon dioxide capture	32
	Conventional solvents for carbon dioxide absorption	33
	Carbon dioxide capture and amine structure	35
5	Economic evaluation of carbon dioxide capture and compression for flue gases from	00
o hvr	drogen production	36
,	Process description	37
	Section 200	38
	Section 2004	38
	Process discussion	30
	Performance parameters for carbon diovide capture unit	40
	Materials of construction	40
	Waterials of construction	41
6	Waste streams	41
0 dio	vide conture and compression	40
uio	Drosson discussion	40 40
		40
		49
	Conital costs	49
	Capital Costs	54
۸		55
Ap	penaix A—Litea reterences	56
Ap	pendix B—Design and cost basis	58
Ap	penaix C—Process flow diagrams	64

Tables

Table 2.1 H ₂ plant with CO ₂ capture and compression economics	9
Table 2.2 Production cost for grey and blue H ₂	10
Table 3.1 Hydrogen production by steam reforming of natural gas—Design bases	17
Table 3.2 Hydrogen production by steam reforming of natural gas stream flows	19
Table 3.3 Hydrogen production by steam reforming of natural gas—Major equipment	25
Table 3.4 Hydrogen production by steam reforming of natural gas—Utility summary	26
Table 3.5 Hydrogen production by steam reforming of natural gas—Total capital investment	27
Table 3.6 Hydrogen production by steam reforming of natural gas—Production cost	28
Table 4.1 CO ₂ sources in hydrogen production	31
Table 4.2 CO ₂ removal efficiency by location in H ₂ production	31
Table 5.1 CO ₂ capture and compression for flue gases from H ₂ production—Design bases	37
Table 5.2 CO ₂ capture and compression for flue gases from H ₂ production—Stream flows	39
Table 5.3 By-product stream/electric power generation for H2 production	40
Table 5.4 Critical performance parameters	41
Table 5.5 CO ₂ capture and compression for flue gases from H ₂ production—Equipment list	42
Table 5.6 CO ₂ capture and compression for flue gases from H ₂ production—Utilities summary	43
Table 5.7 CO ₂ capture and compression for flue gases from H ₂ production—Total capital investment	44
Table 5.8 CO ₂ capture and compression for flue gases from H ₂ production—Total capital	
investment by section	45
Table 5.9 CO ₂ capture and compression for flue gases from H ₂ production—Capture costs	46
Table 6.1 H ₂ production with and without CO ₂ capture results	49
Table 6.2 H ₂ production by SMR of natural gas with CO ₂ capture and compression—Utilities	
consumption	50
Table 6.3 H ₂ Production by SMR of Natural Gas with CO2 Capture & Compression—Total	
capital investment	51
Table 6.4 CO ₂ capture and compression for flue gases from H ₂ production—Total capital	
investment by section	52
Table 6.5 H ₂ production by SMR of natural gas with CO ₂ capture and compression—Production costs	53
Table 6.6 TFC for grey and blue H ₂	54
Table 6.7 Production cost for grey and blue H ₂	55

Figures

Figure 2.1 H ₂ production by SMR of natural gas Figure 2.2 H ₂ production by SMR of natural gas with CO ₂ capture-compression and by-product	7
steam/electric power generation	8
Figure 2.3 Total fixed capital in percentage by plant ection	10
Figure 2.4 Hydrogen consumption by end use	11
Figure 2.5 Demand for hydrogen by region	12
Figure 2.6 Hydrogen production forecast, 2025–50	12
Figure 4.1 CO ₂ sources in H ₂ production	30
Figure 4.2 CO ₂ removal locations	31
Figure 4.3 CO ₂ removal technology selection	32
Figure 4.4 CO ₂ absorption into a liquid solvent with chemical reaction	33
Figure 4.5 Amines	34
Figure 6.1 H ₂ production by SMR of natural gas with CO ₂ capture-compression and by-product	
steam/electric power generation	48

Appendix C Figures

5
6
7
8

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +813 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this presentation in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient dor any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that websites. Copyright © 2021, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

