

Innovative Reactors and Process Intensification

PEP Report 226A

December 2022

Contacts

Syed N. Naqvi

Director Technologies Research & Analytics syed.naqvi@hsmarkit.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Report 226A

Innovative Reactors and Process Intensification

Syed N. Naqvi, Director Technologies Research & Analytics

Abstract

Process intensification (PI) is a specific term used in regard to an industrial process for a measure, which targets at innovation or improvements in the equipment and/or manufacturing/processing systems through redesigning of the existing equipment and/or operation methodologies. In chemical industry, PI can be applied in all stages of the process such as: a) raw materials & their handling/transportation/storage; b) chemical reaction/s; c) separation step/s; d) heat-transfer system/s & heat-integration; e) product/s isolation & purification; f) product/s packaging & storing; etc., etc. Basic PI objectives include reduction in the size & number of devices, improvement in heat- and mass-transfer by advanced mixing technologies and shorter diffusion pathways, miniaturization, novel energy techniques, new separation approaches, integrated optimization, control strategies, etc. PI results in a substantially smaller, or more energy-efficient, or cleaner (less waste-producing), or safer process. These PI benefits may come in any combination. The end result is – economic savings.

This Process Economics Program (PEP) report is written on the subject of application of some of the abovementioned PI tenets in production of commercially important chemicals on industrial scales. This is an update of our previous report (PEP Report 226) that was published about 20 years ago. The current report presents technoeconomic analysis of the following three technologies.

- Methyl acetate production using a reactive distillation column system
- Synthesis gas (H₂ and CO) production using a microchannel reactors system (syngas is reckoned as an intermediate product for a Fischer-Tropsch process)
- Ethyl tertiary butyl ether based on a reactive distillation column system

Apart from above, this report also presents a technical review of various aspects of the process intensification (PI) schemes, which are important from the standpoint of application of its (PI) techniques in chemical, pharmaceutical, and bio-based industries. The same chapter also presents a description of the functional principles of innovative reactors and some other process equipment, hitherto developed, and are used in the chemical and bio industry.

Our evaluation of the above process-intensified technologies show that they offer a good amount of economic savings relative to the conventional production technologies for the three products.

.

Contents

1	Introduction	7
	Report Focus	7
	Report Structure	7
2	Summary	9
	Process Intensification—Concept	9
	Elements of Process Intensification	9
	Report Structure	10
	Process Intensification Reactive Equipment	11
	Intensified Processes Flow Diagrams	11
	Process Economics	15
	Economic Benefit of Process-intensified Processes	18
3	Technical review	20
	Process intensification	20
	Conceptual definition of PI	20
	Elements of Process Intensification	20
	Process Intensification Potential	22
	Examples of areas where process intensification can be applied	23
	Process intensification by heat-integration through a heat-exchange network system	24
	Process intensification through heat-integration in reactive distillation system	28
	Process intensification equipment	31
	Reactors	32
	Microreactors	32
	Oscillatory Flow Mixing Reactors	33
	Spinning Disc Reactors	34
	Rotor-Stator Spinning Disc Reactors	34
	Rotating Packed Beds	35
	Membrane Reactors	35
	Packed-bed Membrane Reactors	36
	Fluidized-bed Membrane Reactors	37
	Monolith Reactors	37
	Tube-in-a-Tube Reactors	38
	Catalytic Endo/Exo Reactors	39
	Distillation Columns	39
	Reactive Distillation Columns	39
	Industrial Application of Reactive Distillation	42
	Divided-wall Columns	44
	Compact Heat Exchangers	46
	Plate & Frame Heat-exchangers	47
	Plate Finned-tube Heat-exchangers	47
	Spiral Heat-exchangers	47
	Mini-channel Heat-exchangers	48
	Static Mixers	48
4	Methyl Acetate Production through a Reactive Distillation Column System—Eastman	
Pro	ocess	50
	Process Overview	52
	Process Description	53
	Process Discussion	55
	Methyl Acetate Production	55
	Materials of Construction	56

	Cost Estimates	60
	Fixed-Capital Costs	60
	Production Costs	60
5	Synthesis Gas Production from Natural Gas through a Microchannel Reactor System	66
	Technical Review of Microchannel SMR Reactors	66
	CompactGTL SMR Reactor Technology	67
	Velocys SMR Reactor Technology	70
	Process Description	77
	Process Discussion	80
	Feedstock	80
	Natural Gas-Steam Blending	81
	Steam-Methane Reformer	81
	CO ₂ Removal from Syngas	81
	Waste Heat Recovery	82
	Water Recovery for Recycle	82
	Materials of Construction	82
	Cost Estimates	86
	Fixed-Capital Costs	86
	Production Costs	87
6	Ethyl Tertiary Butyl Ether Production through a Reactive Distillation Column System	92
	Process Description	95
	Process Discussion	97
	Ethanol Recovery in Process	97
	RD Column Catalyst	97
	Materials of Construction	98
	Cost Estimates	101
	Fixed-Capital Costs	101
	Production Costs	102
Αp	pendix A—Cited references	107
Αp	pendix B—Design and cost basis	111
Αp	pendix C—Process flow diagrams	115

Tables

Table 2.1 Plant Total Fixed Capital Costs—Capital Cost Elements Table 2.2 Production Costs—Production Cost Elements	15 15
Table 2.3 Production Costs—Production Cost Elements of a 35 Million Gallons/Annum ETBE Plant	19
Table 3.1 Potential of PI Technologies in different Areas of Process Improvement	23
Table 3.2 Simulation Conditions for a Mixture consisting of Cyclopentane (A), Benzene (B) and	
Toluene (C)	26
Table 3.3 Simulation Conditions for a Mixture consisting of Cyclopentane (A), Benzene (B) and	
Toluene (C)	35
Table 3.4 Main Industrial Applications of Reactive Distillation	43
Table 3.5 Reported Applications of Dividing-wall Distillation Columns	46
Table 4.1 Methyl Acetate Production through a Reactive Distillation System—Eastman Process	
(Design Bases and Assumptions)	55
Table 4.2 Methyl Acetate Production through a Reactive Distillation System—Eastman Process	
(Main Stream Flows)	57

Table 4.3 Methyl Acetate Production through a Reactive Distillation System—Eastman Process	
(Major equipment)	58
Table 4.4 Methyl Acetate Production through a Reactive Distillation System—Eastman Process (Utilities Summary)	59
Table 4.5 Methyl Acetate Production through a Reactive Distillation System—Eastman Process	59
(Total Fixed Capital)	61
Table 4.6 Methyl Acetate Production through a Reactive Distillation System—Eastman Process	
(Production Costs)	62
Table 5.1 Synthesis Gas Production from Natural Gas through a Microchannel Reactor System—	
Design Bases and Assumptions	79
Table 5.2 Synthesis Gas Production from Natural Gas through a Microchannel Reactor System	83
(Major Stream Flows)	83
Table 5.3 Synthesis Gas Production from Natural Gas through a Microchannel Reactor System	85
(Major equipment) Table 5.4 Synthesis Gas Production from Natural Gas through a Microchannel Reactor System	86
(Utilities Consumption Summary)	86
Table 5.5 Synthesis Gas Production from Natural Gas through a Microchannel Reactor System	
(Total Fixed Capital)	88
Table 5.6 Synthesis Gas Production from Natural Gas through a Microchannel Reactor System	
(Production Costs)	89
Table 6.1 Ethyl Tertiary Butyl Ether Production through a Reactive Distillation System (Design	00
Bases and Assumptions) Table 6.2 Ethyl Tertiany Butyl Ether Braduction through a Basetive Distillation System (Main	96
Table 6.2 Ethyl Tertiary Butyl Ether Production through a Reactive Distillation System (Main Stream Flows)	99
Table 6.3 Ethyl Tertiary Butyl Ether Production through a Reactive Distillation System	55
	100
Table 6.4 Ethyl Tertiary Butyl Ether Production through a Reactive Distillation System	
	101
Table 6.5 Ethyl Tertiary Butyl Ether Production through a Reactive Distillation System (Total	
l /	103
Table 6.6 Ethyl Tertiary Butyl Ether Production through a Reactive Distillation System (Production Costs—continued)	104
Costs—continued)	104
Figures	
i igaics	
Figure 2.1 Elements of Process Intensification	10
Figure 2.2 Process Configuration/Scheme of an Intensified Methyl Acetate Production Process	12
Figure 2.3 Process Configuration/Scheme of an Intensified Synthesis Gas Production Process	13
Figure 2.4 Process Configuration/Scheme of an Intensified Ethyl Tertiary Butyl Ether	
Production Process	14
Figure 2.5 Effect of Acetic Acid Price on the Production Cost & Product Value of Methyl Acetate	16
Figure 2.6 Effect of Methanol Price on the Production Cost & Product Value of Methyl Acetate	17
Figure 2.7 Effect of Natural Gas Price on the Production Cost & Product Value of Synthesis Gas	17
Figure 2.8 Effect of C4 Hydrocarbons Feed Price on the Production Cost & Product Value of ETBE	18
Figure 3.1 Elements of Process Intensification	21
Figure 3.2 Simplified Illustration of a Heat-exchange System	25
Figure 3.3 Heat Integration Options for Separation of Components from a Mixture consisting of Cyclopentane (A), Benzene (B) and Toluene (C	27
Figure 3.4 Methyl Acetate Hydrolysis Process using Reactive Distillation (Base Case)	29
Figure 3.5 Methyl Acetate Hydrolysis Process using Reactive Distillation (RD with a Sidedraw Column)	
Figure 3.6 Methyl Acetate Hydrolysis Process using Reactive Distillation (Thermally-coupled	50
Design of RD with a Sidedraw Column)	31
Figure 3.7A Schematic of a Reactive Distillation Column—Single Reactive Section	40
Figure 3.7B Schematic of a Reactive Distillation Column—Double Reactive Section	40

Figure 3.8 Schematic of a Conventional Two-column Distillation System	44
Figure 3.9 Schematic of a Divided-wall Column Distillation System	45
Figure 4.1 Schematic of a Conventional Methyl Acetate Process by Reactive Distillation	51
Figure 4.2 Schematic of Eastman Methyl Acetate Reactive Distillation Column	53
Figure 4.3 Effect of Methanol Price on Production Cost & Product Value of Methyl Acetate	64
Figure 4.4 Effect of Acetic Acid Price on the Production Cost & Product Value of Methyl Acetate	65
Figure 5.1 Schematic of CompactGTL Modular GTL Process	68
Figure 5.2 Cutaway View of a CompactGTL SMR Reactor Channels	69
Figure 5.3 Schematic of Velocys Microchannel SMR Reactor	70
Figure 5.4 Schematic of Velocys Microchannel SMR Reactor	71
Figure 5.5 Schematic of an experimentally-tested Single-channel Microreactor	73
Figure 5.6 Measured Thermal Profile of a Microchannel SMR Device	74
Figure 5.7 Flow Orientation and Zones in a Velocys Microchannel SMR Reactor	75
Figure 5.8 Picture of a Conceptual Commercial SMR Reactor—Velocys 2009	76
Figure 5.9 Effect of Natural Gas Price on Production Cost & Product Value of Syngas	91
Figure 6.1 Schematic of a Conventional Ethyl Tertiary Butyl Ether Process by Reactive Distillation	93
Figure 6.2 Schematic of a Process-intensified Version of the Conventional Ethyl Tertiary Butyl	
Ether Process	94
Figure 6.3 Catalyst Arrangement inside the ED Column	98
Figure 6.4 Effect of C ₄ Feed Price Price on Production Cost & Product Value of ETBE	106
Appendix C Figures	
Figure 4.5 Methyl Acetate Production through a Reactive Distillation Column System—	
Eastman Process	116
Figure 5.10 Synthetic Gas Production from Natural Gas through a Microchannel Reactor System	117
Figure 6.5 Ethyl Tertiary Butyl Ether Production through a Reactive Distillation System	118

Customer Care

CustomerCare@ihsmarkit.com Asia and the Pacific Rim

Japan: +81 3 6262 1887

Asia Pacific: +604 291 3600

Europe, Middle East, and Africa: +44 1344 328 300

Americas: +1 800 447 2273

Disclaimer

Disclaimer

The information contained in this report is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos and trade names contained in this report that are subject to license. Opinions, statements, estimates, and projections in this report (including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions IHS Markit. Neither IHS Markit nor the author(s) has any obligation to update this report in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in this report, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external website by IHS Markit.

