

Mitsubishi Gas Chemical Methanol Process

PEP Review 2022-01 December 2022

Contacts

Rajeev Singh

Principal Research Analyst rajeev.singh@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Review 2022-01

Mitsubishi Gas Chemical Methanol Process

Rajeev Singh, Principal Research Analyst

Abstract

Methanol is a commodity chemical, produced from natural gas or coal, that can be either used directly or further transformed to produce a wide range of chemicals. Other applications include use for energy and fuel either directly or in the form of methanol downstream product. Globally, methanol production capacity doubled over the past decade. During this period, Northeast Asia accounted for more than three-quarters of the new capacity brought onstream. In 2020, world methanol capacity amounted to 131 million metric ton while production was limited to around 80 million metric tons. Methanol capacity is expected to grow at an average rate of 2.5% per year.

The Mitsubishi methanol process has been jointly developed by Mitsubishi Gas Chemical Company and Mitsubishi Heavy Industries. This process includes three major steps: steam methane reforming, methanol synthesis, and methanol purification.

Methanol plants based on Mitsubishi technology are spread across the world and they produce more than 8 million metric tons of methanol per year. This accounts for around 10% of total world methanol production.

This review presents a techno-economic analysis of the Mitsubishi Gas Chemical Company methanol production process. The technology has been evaluated based on 3,000 MTPD of Federal AA grade methanol production at an 0.9 annual stream factor.

An interactive iPEP Navigator module of the process is included, which provides a snapshot of the process economics and allows the user to select the units and global region of interest.

Contents

1	Introduction	5 6
2 3	Summary Industry status	8
4	Technology	
-	Introduction	10
	Mitsubishi Gas Chemical methanol process	10
	History	10
	Commercial experience	11
	Production process	11
	Hydro-Desulfurization	12
	Steam reforming section	12
	Pre-reforming	13
	Steam-carbon molar ratio	13
	Reforming temperature and pressure	13
	Compression	14
	Methanol synthesis section	14
	Catalyst	16
	Methanol distillation section	20
5	Process design and economics	21
	Design basis	21
	Process description	22
	Section 100—Syngas generation	22
	Section 200—Methanol production	23
	Process discussion	25
	Feedstock	25
	Plant capacity	26
	Natural gas-steam blending	26
	Steam methane reformer	26
	Waste heat recovery	26
	Unreacted syngas recycling	27
	Methanol converters	27
	Plant startup boiler	27
	Materials of construction	27
	Cost estimation	30
	Fixed capital cost	31
	Production cost	32
Ар	34 36	
Appendix B—Design and cost basis		
Ap	pendix C—Process flow diagrams	41

Tables

Table 4.1 Specifications for Federal AA grade methanol	10
Table 4.2 Plant based on Mitsubishi methanol technology	11
Table 5.1 Design bases and assumptions	21
Table 5.2 Natural gas feed composition	22
Table 5.3 Material balance	24
Table 5.4 Mitsubishi methanol process—Major equipment	28
Table 5.5 Mitsubishi methanol process—Utilities summary	30
Table 5.6 Mitsubishi methanol process—Total capital investment	31
Table 5.7 Mitsubishi methanol process—Capital investment by section	32
Table 5.8 Mitsubishi methanol process—Variable costs	33
Table 5.9 Mitsubishi methanol process—Production costs	33

Figures

Figure 1.1 Methanol production process	5
Figure 2.1 Block flow diagram of methanol production process	6
Figure 3.1 World methanol supply and demand	8
Figure 3.2 Methanol demand by region and end use in 2020	9
Figure 4.1 Block flow diagram	11
Figure 4.2 Reformer with flue gas heat recovery	13
Figure 4.3 Equilibrium methane conversion as a function of temperature, pressure, and S/C ratio	14
Figure 4.4 Superconverter operating conditions vs. methanol concentration	15
Figure 4.5 Superconverter with temperature profile	16
Figure 4.6 Operating condition of superconverter	17
Figure 4.7 Methanol production rate	17
Figure 4.8 Catalyst bed temperature profile	18
Figure 4.9 Carbon efficiency of superconverter	19
Figure 4.10 Ethanol content in superconverter	19

Appendix C Figures

Figure 5.1 Mitsubishi Methanol Process (Sheet 1 of 2)	42
Figure 5.1 Mitsubishi Methanol Process (Sheet 2 of 2)	43

Customer Care CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +81 3 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer
The information contained in this report is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by
any means, without the prior written permission of IHS Markit or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS Markit logos
and trade names contained in this report that are subject to license. Opinions, statement, estimates, and projections in this report (including other media) are
solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has
any obligation to update this report in the event that any content, opinion, statement, estimate, or projection (collectively, "information") changes or
subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in
this report, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no
liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or otherwise, in respect of any loss or
damage suffered by any recipient as a result of or in connection with any information provided, or any course of action determined, by it or any third party,
whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit and not the understood to be an
endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external
websites. Copyright © 2022, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

