

Isopropyl Alcohol (IPA) from Acetone

PEP Review 2022-14 November 2022

Contacts

Vijayanand Rajagopalan

Director, Process Economics Program vijayanand.rajagopa@ihsmarkit.com

Michael Arné

Vice President, Process Economics Program michael.arne@ihsmarkit.com

PEP Review 2022-14

Isopropyl Alcohol (IPA) from Acetone

Vijayanand Rajagopalan, Director

Abstract

Isopropyl alcohol (isopropanol or IPA) is the first synthetic alcohol to be commercially produced and it is considered the first petrochemical. Widely used as a direct solvent in industrial applications, it is also used as a chemical intermediate in the production of other specialty chemicals. Recently, IPA has been at the forefront of the battle against COVID-19 as the major component of hand sanitizers, medical wipes, and surface cleaners, which are effective disinfectants.

While traditionally, the feedstock for producing IPA has been propylene, recently whenever certain market scenarios lead to lower acetone prices, (such as increasing phenol demand in a region) the acetone hydrogenation route to produce IPA has been adopted world-wide.

In this review, the Process Economics Program (PEP) team discusses the industry status of IPA, its properties, and uses. Relevant patents to produce IPA from acetone are reviewed. Based on the information obtained from public domain, a design is presented for a generic process to produce commercial-grade IPA industrially via acetone hydrogenation. The production economics assessment in this report is for a plant based at a US Gulf Coast (USGC) location, with a capacity of 111.2 million lb/yr (50 kt/yr) of IPA.

An Excel®-based tool, iPEP Navigator® is provided for easy economic analysis in different regions of the world. The technological and economic assessment of the process is the PEP's independent interpretation of a potential commercial process, which is based on information presented in open literature, such as patents or technical articles, and it may not reflect in whole or in part the actual plant configuration. We do believe that these sources are sufficient to represent the process and process economics within the range of accuracy necessary for the economic evaluations of the conceptual process designs.

Contents

1	Introduction	6
2	Summary	7
	Techno-economic aspects	7
3	Industry status	9
4	Technology review	12
	Process chemistry	12
	Reactor design	14
	Product recovery and purification	16
	Chemicals handling	18
5	Process economics	19
	Basis of design	19
	Process description	20
	Section 100—Acetone hydrogenation	20
	Section 200—IPA recovery	20
	Process discussion	23
	Hydrogenation reactor	23
	IPA recovery	23
	Materials of construction	23
	Environmental impact	23
	Cost estimates	24
	Fixed capital costs	24
	Production costs	25
	Economics summary	25
Ар	pendix A—Design and cost basis	30
Ар	pendix B—Cited references	35
Ар	pendix C—Process flow diagrams	37

Tables

Table 2.1 Isopropyl alcohol from acetone—Key performance metrics and economics summary	8
Table 3.1 Major world producers of IPA (as of 2020)	9
Table 3.2 Region-wise global consumption of isopropyl alcohol	10
Table 4.1 Physical properties of anhydrous IPA	12
Table 4.2 Azeotropes of IPA	12
Table 4.3 Catalyst systems and performances	14
Table 4.4 Properties of acetone	18
Table 5.1 Isopropanol from acetone—Design basis/assumptions	19
Table 5.2 IPA from acetone—Major streams flow	21
Table 5.3 Isopropanol from acetone—Major equipment	22
Table 5.4 Emissions and water footprint	24
Table 5.5 Isopropanol from acetone—Total capital investment	26
Table 5.6 Isopropanol from acetone—Capital investment by section	27
Table 5.7 Isopropanol from acetone—Utilities summary	28
Table 5.8 Isopropanol from acetone—Variable costs	28
Table 5.9 Isopropanol from acetone—Production costs	29

Figures

Figure 2.1 Block flow diagram	7
Figure 4.1 Acetone hydrogenation to IPA—Reaction network	13
Figure 4.2 Multi-tubular reactor for acetone hydrogenation	15
Figure 4.3 Separation schemes for IPA purification	17

Appendix C Figures

Figure 5.1 Process flow diagram—Acetone hydrogenation	38
Figure 5.2 Process flow diagram—IPA recovery	39

Customer Care CustomerCare@ihsmarkit.com Asia and the Pacific Rim Japan: +81 3 6262 1887 Asia Pacific: +604 291 3600 Europe, Middle East, and Africa: +44 1344 328 300 Americas: +1 800 447 2273

Disclaimer

Disclaimer
The information contained in this report is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media or by
any means, without the prior written permission of IHS Markit or any of its affiliates ('IHS Markit') is strictly prohibited. IHS Markit owns all IHS Markit logos
and trade names contained in this report that are subject to license. Opinions, statement, estimates, and projections in this report (including other media) are
solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS Markit nor the author(s) has
any obligation to update this report in the event that any content, opinion, statement, estimate, or projection (collectively, 'information') changes or
subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or timeliness of any information in
this report, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the foregoing, IHS Markit shall have no
liability whatsoever to any recipient as a result of or in connection with any information provided, the inclusion of a link to an external website by IHS Markit do to be understood to be an
endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or output of external
websites. Copyright © 2022, IHS Markit®. All rights reserved and all intellectual property rights are retained by IHS Markit.

