

The Permian Basin Kingdom Project contains 3D geological model of over 60 formations from the Basement to the Upper Permian, all built from IHS Markit interpreted tops. The project contains cleaned Wells, Interpreted Tops, Digital Logs and Allocated Production raw data.

It also contains various types of analytical data, including Zones Attributes, and Grid files, as well as the results of an analysis of 52 plays, comprising 11 Shale (Continuous Type) and 41 Stratigraphic-Structural (Non-Continuous Type) which incorporates Producing Formation from Interpreted Tops (PRODFit), a new enhancement to the IHS Well database.

The objective of the project is to provide a basic ready-made geological platform and raw data for any further work on any area of interest within the basin where users can readily incorporate their proprietary and third-party data. This would save users hundreds of man hours required for data mining, population and collation.

The boundary of the project follows classification and limit in the IHS Markit basin database. No seismic data was used in the project and no structural interpretation and mapping was performed.

86 GB Total 41 GB

Kingdom project Directory (Shape files, grids, models etc.)

Kingdom project SOL database

Projection System

NAD 1927 UTM_Zone_14N, Linear Unit: Foot_US

Software Requirement

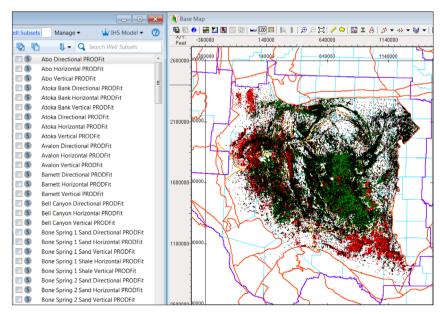
- Kingdom Geology package (VuPAK and EarthPAK modules)
- SQL Server

Data Inventory and Description

Authors

Kingdom Authorship allows for enhanced data management in Kingdom Projects. Each project user can create their own unique authorship, allowing them to keep track of, and manage their own interpretation.

Admin: The Admin author is created as the default author in Kingdom. In order to avoid listing out volumes of data in the general Kingdom Project Folder, this author is only used for management purposes. Subsequent authors have been created to store various types of data. Ideally, each user accessing the project, will create their own authorship for their specific interpretation.


IHSM Interpreted: This author is available for the sole purpose of populating the project with IHS Markit Interpreted Tops for the entire Permian Basin. It separates them from any other formation tops that are loaded from additional sources.

IHSM Model: This author is where all of the modeling work for the entire Permian Basin is stored.

Midland Benches: This author houses IHS Markit Interpreted Formation Benches in the Midland Basin. Modeling on these Benches is also available from this authorship.

Delaware Benches: This author houses IHS Markit Interpreted Formation Benches in the Delaware Basin. Modeling on these Benches is also available from this authorship.

*All users are advised to create a separate Author for any further work.

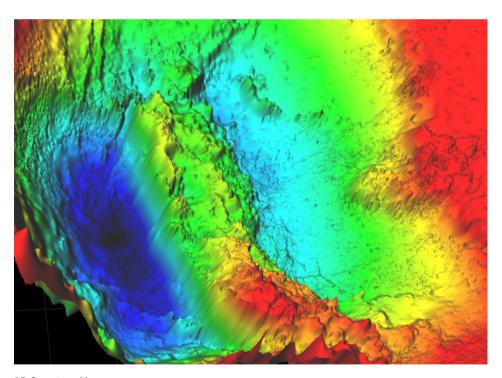
Permian Basin Well Data

Well Data

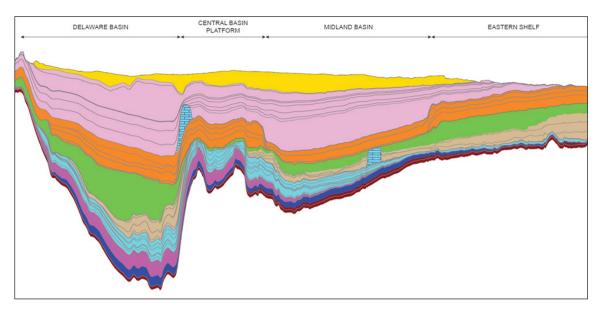
Total number of wells from IHSM Well database 443,662

Wells with Interpreted Formation Tops

235,091


all tops used are IHSM tops. Top depths are in feet.

Total number of wells with IHSM Production volumes 322,229

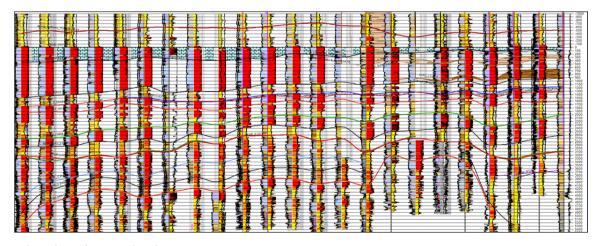

Total Pre-built Well Subsets

225

170 under "IHS Model" author, 34 under "Delaware Benches" author and 21 under "Midland Benches" author. Each subset corresponds to re-assigned producing formation or benches by PRODFit. They are static sets, however, once the PRODFit data are in PIDM and Kingdom is able to extract them then the subsets could be made dynamic and get refreshed every time new wells are added.

3D Structure Map

Permian Basin cross-section using IHSM interpreted formation tops


Digital Logs

Total number of Wells with digital Logs

40,383

Total number of digital log curves

312,528

Selected Benches Correlated Tops

Zone Data

A zone corresponds to the interval of a formation defined by the top of the formation in question to the top of the underlying formation. Zone data contains following attributes:

TVT: True Vertical Thickness. This attribute is populated for all the zones.

GR_ARTH Mean: Mean Gamma Ray API value. This attribute is populated for all the zones.

Ro_Oil_Grav_Derived: Vitrinites Reflectance Value (Ro%) derived from Oil Gravity API Value. This attribute is populated for the nine zones corresponding to nine source rock formations: Brushy Canyon, Spraberry Upper, Spraberry Lower, Avalon, Wolfcamp, Cline, Barnett, Woodford and Simpson formations.

Ro_Avg_Pub: Average Vitrinites Reflectance Value (Ro%) reported in various Publications. This attribute is populated for a few of the nine zones that correspond to the nine source rock formations mentioned above.

Grid Data

Total Number of Grid files

243

163 under "IHS Model" author, **60** under "Delaware Benches" author and **20** under "Midland Benches" author. All the Grids are 1,000 feet cell/pixel sized and prepared with flex-gridding method.

Top Grid Files

76

prepared by gridding IHS Markit Interpreted Tops. Each grid is a continuous plain across the basin passing through formations/benches tops, where the formations/benches may not be necessarily time equivalent but adjacent horizontally or vertically. The entire section is built by stacking TVTs to avoid cross-over and gaps. The top grids are numbered based on their stratigraphic position from top to the bottom.

TVT Grid Files

84

prepared by gridding TVT attributes values from zones depicting the distribution of vertical thickness of a formation/bench.

GR ARTH Mean

74

prepared by gridding GR_ARTH Mean attributes value from zones providing a quick view of muddy and non-muddy parts of the formations/benches. Value less than 5 and above 300 are considered anomalous and ignored during the gridding.

Ro_Avg

for the all the source rock formations, prepared by gridding Ro values derived from Oil Gravity API or in combination with Ro_Avg from published literatures.

Literature

Following documents are available in the folder "The Permian Basin\Literature"

- 1. Stratigraphic Chart
- 2. SW-NE Geological Section
- 3. IHSM Delaware Benches Type Log
- 4. Permian Basin Bibliography

Spatial Data

Following shapefiles are available

Cultural Data: The following culture shapefiles are located in the "The Permian Basin\ Shapefiles\Culture". They are also shown in the Kingdom Base Map under the Culture Inventory.

1. IHS_Main_Basin 6. Basement_Faults

2. IHS_Sub_Basin 7. Permian_NM_Sec

3. AAPG_Province 8. Permian_NM_Twp

4. States 9. Permian_TX_Blocks

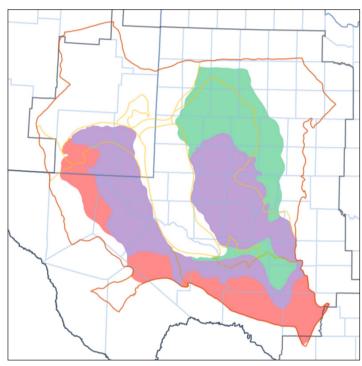
5. Counties 10. Permian_TX_Survey

Play & Play Zone for the Permian Basin: Following play and play zone shapefiles are located in the "The Permian Basin\Shapefiles\Plays\Permian Basin." A pre-labelled map of all the plays and zones is available in "The Permian Basin\IHS Model\Permian Basin Plays Map.lml" in the "Spatial Explorer" module.

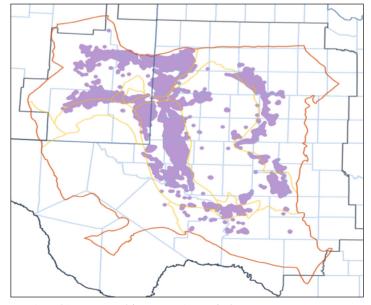
- 1. Play_001_Rustler_Stratigraphic-Structural
- 2. Play_002_Tansill_Stratigraphic-Structural
- 3. Play_003_Yates_Stratigraphic-Structural
- 4. Play_004_Seven_Rivers_Stratigraphic-Structural
- 5. Play_005_Queen_Stratigraphic-Structural
- 6. Play_006_Grayburg_Stratigraphic-Structural
- 7. Play_007_San_Andres_Stratigraphic-Structural
- 8. Play_008_San_Andres_Clastic_Stratigraphic-Structural
- 9. Play_009_Lamar_Stratigraphic-Structural
- 10. Play_010_Bell_Canyon_Stratigraphic-Structural
- 11. Play_011_Cherry_Canyon_Stratigraphic-Structural
- 12. Play_012_Brushy_Canyon_Shale
- 13. Play_012a_Brushy_Canyon_Shale_Play_Zone
- 14. Play_013_Capitan_Reef_Stratigraphic-Structural
- 15. Play_014_Glorieta_Stratigraphic-Structural
- 16. Play_015_Clearfork_Stratigraphic-Structural
- 17. Play_016_Upper_Spraberry_Shale
- 18. Play_016a_Upper_Spraberry_Shale_Play_Zone
- 19. Play_017_Lower_Spraberry_Shale
- 20. Play_017_Lower_Spraberry_Shale_Play_Zone
- 21. Play_018_Tubb_Stratigraphic-Structural
- 22. Play_019_Dean_Stratigraphic-Structural
- 23. Play_020_Wichita_Albany_Stratigraphic-Structural
- 24. Play_021_Abo_Stratigraphic-Structural
- 25. Play_022_Avalon_Shale

- 26. Play_022a_Avalon_Shale_Play_Zone
- 27. Play_023_Bone_Spring_Sandstone_1_Stratigraphic-Structural
- 28. Play_024_Bone_Spring_Sandstone_2_Stratigraphic-Structural
- 29. Play_025_Bone_Spring_Sandstone_3_Stratigraphic-Structural
- 30. Play_026_Wolfcamp_Stratigraphic-Structural
- 31. Play_027_Wolfcamp_Shale_Midland
- 32. Play_027a_Wolfcamp_Shale_Midland_Play_Zone
- 33. Play_028_Wolfcamp_Shale_Delaware
- 34. Play_028a_Wolfcamp_Shale_Delaware_Play_Zone
- 35. Play_029_Wolfcamp_Shale_Val_Verde
- 36. Play_029a_Wolfcamp_Shale_Val_Verde_Play_Zone
- 37. Play_030_Permian_Detrital_Stratigraphic-Structural
- 38. Play_031_Cisco_Stratigraphic-Structural
- 39. Play_032_Canyon_Stratigraphic-Structural
- 40. Play 033 Cline Shale
- 41. Play_033a_Cline_Shale_Play_Zone
- 42. Play_034_Strawn_Stratigraphic-Structural
- 43. Play 035 Horseshoe Atoll Stratigraphic-Structural
- 44. Play_036_Atoka_Stratigraphic-Structural
- 45. Play 037 Upper Morrow Stratigraphic-Structural
- 46. Play_038_Lower_Morrow_Stratigraphic-Structural
- 47. Play_039_Pennsylvanian_Detrital_Stratigraphic-Structural
- 48. Play_040_Upper_Mississippian_Stratigraphic-Structural
- 49. Play_041_Barnett_Shale
- 50. Play 041a Barnett Shale Play Zone
- 51. Play_042_Lower_Mississippian_Stratigraphic-Structural
- 52. Play_043_Woodford_Shale
- 53. Play_043a_Woodford_Shale_Play_Zone
- 54. Play_044_Devonian_Stratigraphic-Structural
- 55. Play_045_Upper_Silurian_Stratigraphic-Structural
- 56. Play_046_Fusselman_Stratigraphic-Structural
- 57. Play_047_Montoya_Stratigraphic-Structural
- 58. Play_048_Simpson_Shale
- 59. Play_048a_Simpson_Shale_Play_Zone
- 60. Play_049_Ellenburger_Stratigraphic-Structural
- 61. Play_050_Cambrian_Stratigraphic-Structural
- 62. Play_051_Granite_Wash_Stratigraphic-Structural
- 63. Play_052_Precambrian_Stratigraphic-Structural
- 64. Permian_All_Plays

Oil Zone


Ro values between 0.55°- 0.9°, approximately corresponding to 15° - 35° API Gravity

Wet Gas Zone


Ro values between 0.9°- 1.4°, approximately corresponding to 35° - 50° API Gravity

Dry Gas Zone

Ro values between
1.4°- 4°, approximately
corresponding to
greater than 50°
API Gravity

Shale (Continous Play)

Stratigraphic-Structural (Non-Continuous) Play

Play Shapefiles have following abbreviated attributes

- 1. TopAvgFT: Average top depth (MD) in feet
- 2. GrThkAvgFT: Average Gross Thickness in feet
- 3. TOCMin: Minimum Total Organic Carbon in wt%
- 4. TOCAvg: Average Total Organic Carbon in wt%
- 5. TOCMax: Maximum Total Organic Carbon wt%
- 6. Play_SQMI: Play area in square miles
- 7. OOIP_MMb: Original Oil in-Place in Millions of Barrels, resource estimated through IHS Markit's "TightEVal".
- 8. Cn_RF_O: Conventional Recovery Factor for Oil,
- 9. UCn_RF_O: Unconventional Recovery Factor for Oil
- 10. Tot_RF_O: Total Recovery Factor for Oil
- 11. Cn_Re_MMb: Conventional Recoverable Millions of Barrels
- 12. UCn_Re_MMb: Unconventional Recoverable Millions of Barrels
- 13. NHz Pd MMb: Non-Horizontal (Vertical and Directional) Cumulative Production in Millions of Barrels
- 14. Hz_Pd_MMb: Horizontal Cumulative Production in Millions of Barrels
- 15. Tot_Pd_MMb: Total Cumulative Production in Millions of Barrels
- 16. Cn_Rm_MMb: Conventional Remaining in Millions of Barrels
- 17. UCn_Rm_MMb: Unconventional Remaining in Millions of Barrels
- 18. Tot_Rm_MMb: Total Remaining in Millions of Barrels
- 19. OGIP_BCF: Original Gas in-Place in Billion Cubic Feet, resource estimated through IHS Markit's "TightEVal".
- 20. Cn_RF_G: Conventional Recovery Factor for Gas
- 21. UCn_RF_G: Unconventional Recovery Factor for Gas
- 22. Tot_RF_G: Total Recovery Factor for Gas
- 23. Cn_Re_BCF: Conventional Recoverable in Billion Cubic Feet
- 24. UCn_Re_BCF: Unconventional Recoverable in Billion Cubic Feet
- 25. Tot Re BCF: Total Recoverable in Billion Cubic Feet
- 26. NHz_Pd_BCF: Non-Horizontal (Vertical and Directional) Cumulative Production in Billion Cubic Feet.
- 27. Hz_Pd_BCF: Horizontal Cumulative Production in Billion Cubic Feet
- 28. Tot_Pd_Bcf: Total Cumulative Production in Billion Cubic Feet
- 29. Cn_Rm_BCF: Conventional Remaining in Billion Cubic Feet
- 30. UCn Rm BCF: Unconventional Remaining in Billion Cubic Feet
- 31. Tot_Rm_BCF: Total Remaining in Billion Cubic Feet

Play & Play Zone for the Delaware Benches: The following play and play zone shapefiles are located in the "The Permian Basin\Shapefiles\Plays\Delaware Benches." A pre-labelled map of all the plays & zones is available in "The Permian Basin\Delaware Benches\Delaware Benches Plays Map.lml" in the "Spatial Explorer" module.

- 1. Play_001_Bone_Spring_Limestone_Stratigraphic-Structural
- 2. Play_002_Leonard_Shale
- 3. Play_002a_Leonard_Shale_Play_Zone
- 4. Play_003_Avalon_Upper_Shale
- 5. Play_003a_Avalon_Upper_Shale_Play_Zone
- 6. Play_004_Avalon_Lower_Shale
- 7. Play_004a_Avalon_Lower_Shale_Play_Zone
- 8. Play_005_Bone_Spring_1_Sand_Stratigraphic-Structural
- 9. Play_006_Bone_Spring_1_Shale
- 10. Play_006a_Bone_Spring_1_Shale_Play_Zone
- 11. Play_007_Bone_Spring_2_Sand_Stratigraphic-Structural
- 12. Play_008_Bone_Spring_3_Sand_Stratigraphic-Structural
- 13. Play_009_Wolfcamp_A_Shale
- 14. Play_009a_Wolfcamp_A_Shale_Play_Zone
- 15. Play_010_Wolfcamp_B_Shale
- 16. Play_010a_Wolfcamp_B_Shale_Play_Zone
- 17. Play 011 Wolfcamp C Shale
- 18. Play 011a Wolfcamp C Shale Play Zone
- 19. Play_012_Wolfcamp_D_Shale
- 20. Play_012a_Wolfcamp_D_Shale_Play_Zone
- 21. Delaware_Benches_All_Plays

Definitions

Shale Play (Continuous Type): Self-sourcing, filled during expulsion. It is also referred to as source-rock-reservoir-system implying that part of the generated hydrocarbons remain trapped within the source rock itself with minimal or no migration.

The extent of a shale play is defined by area where the concerned interval is greater than 10 feet in true vertical thickness, between 2,000-20,000 feet in true vertical depth and between 0.55°- 4° in Vitrinite Reflectance (Ro) values.

Stratigraphic-Structural Play (Non-Continuous Type): Non-self-sourced reservoirs disconnected from a mature source rock, filled during secondary and tertiary migration and spatially confined by a conventional trap mechanism. In the Permian Basin, these conventional reservoirs have gone through secondary and even tertiary EOR, thus further production is likely to be through short lateral and low volume fracs, offering lower risk, better upside potential and ultimately lower cost.

The extent of a Stratigraphic-Structural Play is defined by 1.5 to 2 miles buffer around productive and show wells from the concerned interval.

About IHS Markit

IHS Markit (Nasdaq: INFO) is a world leader in critical information, analytics and solutions for the major industries and markets that drive economies worldwide. The company delivers next-generation information, analytics and solutions to customers in business, finance and government, improving their operational efficiency and providing deep insights that lead to well-informed, confident decisions. IHS Markit has more than 50,000 key business and government customers, including 85 percent of the Fortune Global 500 and the world's leading financial institutions. Headquartered in London, IHS Markit is committed to sustainable, profitable growth.

CUSTOMER CARE

NORTH AND SOUTH AMERICA

- **T** +1 800 447 2273
 - +1 303 858 6187 (Outside US/Canada)

EUROPE, MIDDLE EAST AND AFRICA **T** +44 1344 328 300

ASIA PACIFIC

- **T** +604 291 3600
- **E** CustomerCare@ihsmarkit.com

ihsmarkit.com

