HIS CHEMICAL High Olefins Fluid Catalytic Cracking Processes

Process Economics Program Report 195B

November 2016

ihs.com

Mike Kelly Sr. Principal Analyst

PEP Report195B

High Olefins Fluid Catalytic Cracking Processes

Mike Kelly, Sr. Principal Analyst

Abstract

Fluid catalytic cracking (FCC) has been a major refinery conversion process for more than seven decades. The technology is mature, but it continues to evolve in the areas of mechanical reliability, feedstock and operational flexibility, and meeting regulatory requirements. While FCC units have traditionally been operated to maximize gasoline or distillate production, interest in maximizing light olefins, particularly propylene, has gained traction in recent decades. FCC catalyst formulation and process technology improvements now give refiners the flexibility to boost propylene yields from traditional levels of 4–6 wt% to beyond 20 wt%. Slowing propylene supply growth from steam cracking—the principal source for propylene production—opens up potential opportunities for FCC to help fill the mounting propylene supply-demand gap.

This report provides an overview of fluid catalytic cracking developments in catalyst, process, and hardware technologies with a focus on high olefins processes. A general review of the technical field and recent process developments is included for several primary licensors in the space. Detailed technical and economic evaluations are presented for three high olefins FCC technologies from leading licensors from a market share perspective. Specific assessments are provided for the following technologies:

- KBR MAXOFIN™
- UOP PetroFCCTM
- CB&I/Lummus Selected Component Cracking (SCC)

The analysis and technoeconomic design results that follow are based on an FCC unit that processes 40,000 barrel per day of vacuum gas oil feed. Alternative investment and production cost estimates are also provided for plant capacities that are half and double the base case. While the capital and production cost results herein are presented on a US Gulf Coast basis, the accompanying iPEP Navigator Excel-based data module (available with the electronic version of this report) allows for viewing results for other major regions along with conversion between English and metric units.

Contents

1	Introduction	11
2	Summary	12
	Industry aspects	12
	Technical aspects	13
	KBR MAXOFIN™	15
	UOP PetroFCC™	15
	CB&I/Lummus Selected Component Cracking (SCC)	16
	Economic aspects	16
3	Industry status	18
	Refined products	19
	Diesel	20
	Gasoline	21
	Residual fuel oil	22
	Naphtha	23
	Propylene	24
	Catalytic cracking capacity	25
4	Technology review	27
	Feedstocks	27
	Products	30
	Dry gas	30
	LPG	31
	Gasoline	31
	Light cycle oil	31
	Heavy cycle oil and slurry oil	31
	Chemistry	32
	Basic reactions	33
	Hydrocarbon cracking (β scission)	33
	I hermal cracking	34
	Hydrogen transfer	34
		35
		35
	Sulfur compound cracking	35
	NO_x formation mechanism	37
	Creating kinetics	40
		40
		40
		43
	Calalyst IIIallix Kov charactoristics	44
	Manufacturing	45
	Additives	40
		40
		40 17
	NO _X	47
	50x	48

IHS™ CHEMICAL

COPYRIGHT NOTICE AND DISCLAIMER © 2016 IHS. For internal use of IHS clients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. Contert reproduced or redistributed with IHS permission must display IHS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based upon it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to variaus risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

Gasoline sulfur	48
Metal traps	49
Bottoms cracking	49
Selected commercial offerings	49
Environmental	52
FCC gasoline sulfur reduction	52
	52
Baset treatment	50
Fue are aminimum and control	55
Carbon monovido (CO)	54
	56
NO	57
Particulates	60
Hardware and configuration	62
Feed injection	62
Riser	62
Riser termination	63
Catalyst stripping	63
Standpipes	64
Regeneration	65
Catalyst cooler	66
Oxygen enrichment	66
Third-stage separator	67
Power and heat recovery	67
Main fractionator	67
Vapor recovery section	68
Maximizing FCC propylene	69
Feed quality	69
Reactor temperature	70
Hydrocarbon partial pressure	70
Hydrogen transfer reactions	70
Catalyst-to-oil ratio	70
ZSM-5 catalyst additive	70
	70
Other considerations	71
	71
NDR OrthoflowTM converter	71
	71
Riser quench	73
Riser termination	75
DvnaFlux™ stripping	76
Regenerator	78
Catalyst cooler	80
CycloFines™ third-stage separator	82
MagnaCat™ magnetic catalyst separation	83
MAXOFIN™ process	84
Other catalytic olefin processes	86
Other developments	88
UOP	89
Optimix [™] feed injection	89
Vortex separator system	92
Advanced fluidization stripping	94
RxCat™ catalyst recycle	95

Regenerator	96
Catalyst cooler	99
Third-stage separation	100
PetroFCC [™] process	101
RxPro™ process	102
MSCC process	103
RFCC process	104
Other developments	105
CB&I/Lummus	108
Micro-Jet™ feed injectors	108
ModGrid™ catalyst stripper	108
Riser termination	109
Multistage orifice (MSO) air distributor	110
Catalyst cooler	111
SCC process	112
Indmax SM process	114
Other developments	115
Axens/Technip	116
Feed injection	116
Riser termination	117
Stripper	119
Regenerator	120
Catalyst cooler	121
R2R [™] process	122
R2P™ process	124
HP-FCC process	124
HS-FCC process	125
FlexEne [™] process	127
Other developments	128
Shell	129
Feed injection	129
Riser internals	130
Riser termination	131
PentaFlow™ stripping	132
Standpipe flow	133
Regenerator	134
Third-stage separator	135
FCC process	137
MILOS process	137
Sinopec	138
Deep catalytic cracking (DCC)	138
Catalytic pyrolysis process (CPP)	139
Flexible dual-riser FCC process (FDFCC-III)	140
Propylene via KBR MAXOFIN™ process	141
Process description	141
Section 100—Cracking and fractionation	141
Section 200—Vapor recovery	143
Section 300—Propylene recovery	144
Process discussion	152
Feedstock	152
Cracking section	153
Vapor recovery section	153
Propylene recovery section	154
Environment	154
Optimization	155

5

	Cost estimates	155
	Capital costs	155
~	Production costs	156
0	Propylene via UOP PetroFCC ¹ ^m process	162
	Process description	162
	Section 100—Cracking and tractionation	162
	Section 200—Vapor recovery	164
	Section 300—Propylene recovery	165
	Process discussion	174
		174
		174
	vapor recovery section	175
	Propylene recovery section	175
	Environment	176
	Optimization	176
		176
		176
_	Production costs	1//
7	Propylene via CB&I/Lummus SCC process	183
	Process description	183
	Section 100—Cracking and fractionation	183
	Section 200—Vapor recovery	185
	Section 300—Propylene recovery	186
	Process discussion	194
	Feedstock	195
	Cracking section	195
	Vapor recovery section	196
	Propylene recovery section	196
	Environment	196
	Optimization	197
	Cost estimates	197
	Capital costs	197
	Production costs	198
Арр	pendix A—Patent summaries	204
App	pendix B—Design and cost basis	222
Арр	pendix C—Cited references	227
Арр	pendix D—Patent references by company	241
Арр	pendix E—Process flow diagrams	244

Tables

Table 2.1 Comparison of high olefin fluid catalytic cracking process conditions and features Table 2.2 Comparison of high olefin fluid catalytic cracking investment and production costs	15 17 26
Table 4.1 Mass-spec analysis of FCC feedstock	20
Table 4.2 Feedstock guidelines for residual FCC	28
Table 4.3 Distribution of sulfur compounds in FCC feedstocks	30
Table 4.4 Typical propylene quality specifications	31
Table 4.5 Aspen HYSYS [®] 21-lump kinetic model	43
Table 4.6 Selected commercial FCC catalysts	50
Table 4.7 Selected commercial FCC cocatalysts and additives	51
Table 4.8 United States FCCU air emission control requirements	56
Table 4.9 Post-regenerator NOx control technology comparison	58

Table 4.10 Selective catalytic reduction process conditions	59
Table 4.11 Riser termination considerations	63
Table 4.12 Regenerator oxygen enrichment impact	67
Table 4.13 Paulsboro stripper performance before and after FluxTube™ installation	78
Table 4.14 KBR MAXOFIN™ operating mode comparison	86
Table 4.15 KBR catalytic cracking olefin processes	86
Table 4.16 CB&I/Lummus Selected Component Cracking product yields	113
Table 4.17 CB&I/Lummus Indmax SM typical operating conditions	115
Table 4.18 CB&I/Lummus Indmax SM yield range	115
Table 4.19 Axens/Technip R2P™ yield comparison	124
Table 4.20 Sinopec DCC operating parameter summary	139
Table 4.21 Sinopec CPP operating parameter summary	139
Table 5.1 Propylene via KBR MAXOFIN™ FCC process—Design bases and assumptions	145
Table 5.2 Propylene via KBR MAXOFIN™ FCC process—Product yields	146
Table 5.3 Propylene via KBR MAXOFIN™ FCC process—Stream flows	146
Table 5.4 Propylene via KBR MAXOFIN™ FCC process—Major equipment	148
Table 5.5 Propylene via KBR MAXOFIN™ FCC process—Utilities summary	152
Table 5.6 Propylene via KBR MAXOFIN™ FCC process—Vacuum gas oil properties	152
Table 5.7 Propylene via KBR MAXOFIN™ FCC process—Total capital investment	158
Table 5.8 Propylene via KBR MAXOFIN™ FCC process—Total capital investment by section	159
Table 5.9 Propylene via KBR MAXOFIN™ FCC process—Production costs	160
Table 6.1 Propylene via UOP PetroFCC [™] process—Design bases and assumptions	166
Table 6.2 Propylene via UOP PetroFCC [™] process—Product yields	167
Table 6.3 Propylene via UOP PetroFCC [™] process—Stream flows	167
Table 6.4 Propylene via UOP PetroFCC™ process—Major equipment	170
Table 6.5 Propylene via UOP PetroFCC™ process—Utilities summary	173
Table 6.6 Propylene via UOP PetroFCC [™] process—Vacuum gas oil properties	174
Table 6.7 Propylene via UOP PetroFCC [™] process—Total capital investment	179
Table 6.8 Propylene via UOP PetroFCC™ process—Total capital investment by section	180
Table 6.9 Propylene via UOP PetroFCC [™] process—Production costs	181
Table 7.1 Propylene via CB&I/Lummus SCC FCC process—Design bases and assumptions	187
Table 7.2 Propylene via CB&I/Lummus SCC FCC process—Product yields	188
Table 7.3 Propylene via CB&I/Lummus SCC FCC process—Stream flows	188
Table 7.4 Propylene via CB&I/Lummus SCC FCC process—Major equipment	191
Table 7.5 Propylene via CB&I/Lummus SCC FCC process—Utilities summary	194
Table 7.6 Propylene via CB&I/Lummus SCC FCC process—Vacuum gas oil properties	195
Table 7.7 Propylene via CB&I/Lummus SCC FCC process—Total capital investment	200
Table 7.8 Propylene via CB&I/Lummus SCC FCC process—Total capital investment by section	201
Table 7.9 Propylene via CB&I/Lummus SCC FCC process—Production costs	202

Figures

Figure 2.1 Typical high olefins fluid catalytic cracking block flow diagram	14
Figure 2.2 Comparison of high olefin fluid catalytic cracking production costs	17
Figure 3.1 FCC in the fuel refinery—Block flow diagram	19
Figure 3.2 GDP growth drives refined product demand growth	20
Figure 3.3 Global diesel demand	21
Figure 3.4 Global gasoline demand	22
Figure 3.5 Global residual fuel oil demand	22
Figure 3.6 Global naphtha demand	23
Figure 3.7 World PG/CG propylene production by technology	24
Figure 3.8 World PG/CG propylene demand	25
Figure 3.9 Regional catalytic cracking capacity	26
Figure 4.1 Main reactions in FCC	32

Figure 4.2 Reaction scheme for cracking sulfur compounds	37
Figure 4.3 Structure of faujasite Y-type zeolite	44
Figure 4.4 Common FCC catalyst stripping designs	64
Figure 4.5 KBR Orthoflow™ converter	72
Figure 4.6 KBR ATOMAX-2™ nozzle	73
Figure 4.7 KBR ATOMAX-2™ injection cone	74
Figure 4.8 KBR riser guench temperature profile	75
Figure 4.9 KBR cyclones with integrated stripping	76
Figure 4.10 KBR FluxTubes™ stripping baffles	77
Figure 4.11 KBR Lateral Mixing Elements™ stripping baffles	78
Figure 4.12 KBR self-aerating spent catalyst distributor	79
Figure 4.13 KBR RegenMax [™] staged regeneration	80
Figure 4.14 KBR catalyst cooler	81
Figure 4.15 KBR CycloFines™ third-stage separator	82
Figure 4.16 KBR MagnaCat™ catalyst separation process	84
Figure 4.17 KBR MAXOFIN™ converter	85
Figure 4.18 KBR Superflex™ process reaction section	87
Figure 4.19 KBR Superflex™ process separation section	88
Figure 4.20 UOP Optimix™ feed distributor	90
Figure 4.21 UOP Optimix™ nozzle tip designs	91
Figure 4.22 UOP dual radius feed distribution	92
Figure 4.23 UOP vortex separation system (VSS™)	93
Figure 4.24 UOP AF™ stripper internals	94
Figure 4.29 UOP piped spent catalyst distributor	97
Figure 4.30 UOP combustor-style regenerator	98
Figure 4.31 UOP two-stage regenerator	99
Figure 4.32 UOP catalyst cooler	100
Figure 4.33 UOP third-stage separator	101
Figure 4.25 UOP PetroFCC [™] process	102
Figure 4.26 UOP RxPro™ process	103
Figure 4.27 UOP MSCC reactor	104
Figure 4.28 UOP RFCC process	105
Figure 4.34 CB&I/Lummus Micro-Jet™ feed injector	108
Figure 4.35 CB&I/Lummus ModGrid™ stripper baffle	109
Figure 4.36 CB&I/Lummus direct coupled cyclones	110
Figure 4.37 CB&I/Lummus multistage orifice air distributor	111
Figure 4.38 CB&I/Lummus and LPEC catalyst cooler configurations	112
Figure 4.39 CB&I/Lummus Selected Component Cracking process	114
Figure 4.40 Axens/Technip feed nozzle	117
Figure 4.41 Axens/Technip riser separation system	119
Figure 4.42 Axens/Technip stripper baffles	120
Figure 4.43 Axens/Technip catalyst cooler	122
Figure 4.44 Axens/Technip R2R™ technology	123
Figure 4.45 Axens/Technip HS-FCC™ down-flow reactor	126
Figure 4.46 Axens/Technip HS-FCC™ reaction product separator	127
Figure 4.47 Axens FlexEne™ process	128
Figure 4.48 Shell feed injection nozzle	130
Figure 4.49 Shell HIB ring internals	131
Figure 4.50 Shell riser termination	132
Figure 4.51 Shell PentaFlow™ stripping baffle	133
Figure 4.52 Shell catalyst circulation enhancement technology	134
Figure 4.53 Shell regenerator technology	135
Figure 4.54 Shell third-stage separator	136
Figure 4.55 Shell typical FCC contiguration	137
Figure 5.2 Propylene via KBR MAXOFIN™ FCC process—Effect of plant capacity on investment	4 = 6
COSIS	156

Figure 5	5.3	Propylene via KBR MAXOFIN™ FCC process—Net production cost as a function of	
0		operating level	157
Figure &	5.4	Propylene via KBR MAXOFIN [™] FCC process—Product value as a function of operating level	157
Figure 6	6.2	Propylene via UOP PetroFCC [™] process—Effect of plant capacity on investment costs	177
Figure 6	6.3	Propylene via UOP PetroFCC [™] process—Net production cost as a function of operating level	178
Figure 6	6.4	Propylene via UOP PetroFCC [™] process—Product value as a function of operating level	178
Figure 7	7.2	Propylene via CB&I/Lummus SCC FCC process—Effect of plant capacity on investment costs	198
Figure 7	7.3	Propylene via CB&I/Lummus SCC FCC process—Net production cost as a function of operating level	199
Figure 7	7.4	Propylene via CB&I/Lummus SCC FCC process—Product value as a function of operating level	199
Figure 8 Figure 6	5.1 6.1	Propylene via KBR MAXOFIN™ FCC process—Process flow diagram Propylene via UOP PetroFCC™ process—Process flow diagram	245 248 251
i igule i		ropylene via obair cuminus oco roc process—rocess now diagram	201

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

